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Abstract: Wearables with photoplethysmography (PPG) sensors are being increasingly used in

clinical research as a non-invasive, inexpensive method for remote monitoring of physiological health.

Ensuring the accuracy and reliability of PPG-derived measurements is critical, as inaccuracies can

impact research findings and clinical decisions. This paper systematically compares heart rate (HR)

and heart rate variability (HRV) measures from PPG against an electrocardiogram (ECG) monitor

in free-living settings. Two devices with PPG and one device with an ECG sensor were worn by

25 healthy volunteers for 10 days. PPG-derived HR and HRV showed reasonable accuracy and

reliability, particularly during sleep, with mean absolute error < 1 beat for HR and 6–15 ms for HRV.

The relative error of HRV estimated from PPG varied with activity type and was higher than during

the resting state by 14–51%. The accuracy of HR/HRV was impacted by the proportion of usable data,

body posture, and epoch length. The multi-scale peak and trough detection algorithm demonstrated

superior performance in detecting beats from PPG signals, with an F1 score of 89% during sleep. The

study demonstrates the trade-offs of utilizing PPG measurements for remote monitoring in daily life

and identifies optimal use conditions by recommending enhancements.

Keywords: wearables; ECG; PPG; heart rate; heart rate variability; pulse rate; pulse rate variability;

autonomic nervous system; remote monitoring; beat detection; multi-scale peak and trough detection

algorithm

1. Introduction

The continuous assessment of heart rate (HR) and heart rate variability (HRV) in daily
life is crucial for pre-emptive health monitoring and management of chronic diseases [1,2].
Diseases such as inflammatory bowel disease, including Crohn’s disease and ulcerative
colitis, are linked to complex interactions between the autonomic nervous system and
gut inflammation, with stress exacerbating the condition [3]. HRV, as a reliable indicator
of autonomic nervous system balance, can reflect physical and emotional stress and is
predictive of cardiovascular morbidity and mortality [4]. Continuous HR monitoring
assists in detecting arrhythmias and other heart conditions that may go unnoticed in
episodic clinical tests [5,6]. Thus, daily life variability in HR and HRV can provide a more
accurate picture of an individual’s health. Wearable PPG based devices are increasingly
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being used in continuous monitoring of HR and HRV. PPG devices use optical sensors to
detect blood volume changes in tissue and are convenient for a variety of settings, including
personal health applications. The PPG sensors, however, do not technically measure HR but
rather specifically measure the pulse rate (PR) from the blood volume change. Therefore,
they do not measure HRV, but they do technically measure pulse rate variability (PRV).
However, for the purpose of simplicity, we will use the terms HR and HRV for both ECG-
and PPG-derived measurements but specifically note if they have been derived from a
PPG or ECG sensor. Various studies [7–9] have validated the utility of PPG in different
contexts, including resting, post-exercise, and field conditions, demonstrating its versatility
and effectiveness.

Despite their promise, the utilization of PPG-based devices in clinical research presents
several limitations that must be first understood and addressed before deploying them
in clinical trials. A key issue is the impact of individual differences, such as skin tone,
age, and gender, on PPG readings [10–14]. Physiological aspects like respiration, venous
pulsation, and body temperature can introduce noise in PPG signals [15–18]. Additionally,
external factors such as motion artifacts, ambient light, and pressure applied to the skin
can affect the accuracy of PPG devices [19–23]. Since this can negatively impact the quality
of the data, careful consideration is necessary in the selection and use of PPG devices for
health monitoring.

PPG-based devices can provide a plethora of features primarily categorized into HR
and HRV. HRV features can be further categorized into time domain, frequency domain,
and non-linear domain features [4]. The previous studies validating physiological measures
from PPG devices have been primarily conducted in controlled environments, which do not
represent the challenges encountered in data quality, compliance, and reliability when used
in free-living settings. Furthermore, the results reporting accuracy of PPG-derived HRV
vary in literature, and there is a paucity of studies evaluating HRV features in free-living
conditions. For example, Polar H10 reported good agreement with an ECG-based device
for interbeat intervals (R-R intervals) and HR; however, results were not reported for any
HRV feature [24]. Polar V800 showed weak absolute agreement (intra class correlation
(ICC) < 0.3) with an ECG-based device for time domain HRV features such as root mean
square of successive differences (RMSSD) and standard deviation of normal RR (NN)
intervals (SDNN) [25]. In another study [26], six wearable devices were evaluated in sleep
lab settings, where good agreement was found for HR and poor agreement for RMSSD. The
validation of PPG-derived R-R intervals and HR was performed in [27], where analysis was
conducted under a resting state and over a very short recording time of 45 s. Another study
validated the Samsung smartwatch during awake and asleep state against an ECG-based
device using an epoch length of 5-min, showing weak to moderate correlation for HR and
HRV during awake state and moderate to strong correlation during asleep state [28].

For precise heartbeat detection, especially under varying cardiac conditions, it is
crucial to collect and analyze raw PPG data [29]. Innovative algorithms play a pivotal role
in this context. For example, a study employed a peak detection algorithm for smartwatch
PPG signals, resulting in significantly enhanced heart rate estimation accuracy in scenarios
including atrial fibrillation [30]. A bidirectional recurrent denoising auto-encoder method
demonstrated effectiveness in denoising and accentuating PPG waveform features, thereby
improving signal quality and heart rate detection [31]. Additionally, the implementation of
a novel hybrid motion artifact detection-reduction method using support vector machines
has been shown to improve the accuracy of motion artifact detection, which is crucial
for real-time vital sign monitoring [32]. However, before application of such complex
algorithms, there is a need to first understand the baseline performance of traditional
algorithms [33].

In this study, we address the gap in the existing research by performing a rigorous
validation of PPG-derived physiological measures. Specifically, the objectives are as follows:

(1) Assessment of the feasibility of collecting continuous data from PPG devices and their
usability in daily life settings.
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(2) Validation of the HR and HRV derived from PPG devices during awake, asleep, or
the full day period compared to that of an ECG sensor.

(3) Investigation of impact of data quality, body posture, activity types, epoch length for
HRV estimation, use of dominant vs. non-dominant hand on estimation of HR and
HRV from PPG devices.

(4) Assessment of the test–retest reliability of PPG-derived HR and HRV features in the
daily life settings under awake, asleep, and full day periods.

(5) Investigation of the performance of seven algorithms to detect beats from the raw
PPG waveform signal to identify potentially superior approaches to analyze noisy
sensor data in the daily life.

2. Methods

2.1. Study Participants

Twenty-five healthy volunteers participated in this non-interventional exploratory
study. The clinical study was performed at a single clinical pharmacology unit in Belgium
during November 2022 to March 2023. The individuals were 18 years of age or older
and determined to be healthy based on physical examination, medical history, and vital
signs recorded during screening. The participants were required to comply with study
instructions: wear two PPG devices and an ECG sensor simultaneously for two consecutive
five-day periods and complete daily morning questionnaires and an end-of-study survey.
The participants were excluded from the study if they had current or prior medical condi-
tions, concomitant therapies, and current or prior participation in a clinical study within
28 days of the start of this study. Furthermore, they were also excluded if they had any
constraints on sleep schedule, exposure to high frequency equipment during monitoring
period, or tattoos on their wrist or torso potentially interfering with PPG/ECG measure-
ments. They were not allowed to perform intensive exercise nor activities submerging
devices in water during the monitoring period. The study received approval from the ethics
committee of UZA/UAntwerp (3738-BUN B3002022000126). All participants provided
written informed consent. This study followed the procedure according to the Declaration
of Helsinki.

2.2. Measurement Setup

Two PPG-based devices (the Whoop 4.0 [34] and the Corsano CardioWatch 287-1B [35])
and one ECG device (Vital Patch [36]) were used in this study. The Corsano CardioWatch
287-1B (manufacturer: Corsano Healthcare BV, Den Haag, The Netherlands) is a wrist-worn
research-based home monitoring device and consists of an accelerometer, PPG sensors, and
a battery. The bracelet connects via Bluetooth to a mobile app and then to Corsano’s secure
cloud. It sampled acceleration and PPG signals at 25 Hz and used firmware version 4.13. In
addition the to raw data, it also provides the following readings: heart rate, R-R intervals,
heart rate variability (e.g., RMSSD), respiration rate, activity count, activity type, steps,
energy expenditure, and sleep stages.

The Whoop 4.0 (manufacturer: Whoop, Boston, MA, USA) is a wrist worn commercial
device and captures continuous data from its accelerometer and PPG sensors. The Whoop
strap containing the actual measuring device connects via Bluetooth to a mobile app and
then to secure cloud storage. The firmware version 41.9.2-11.5 was used for Whoop. The
device measures the following: sleep duration, sleep staging, sleep disturbances, sleep
efficiency, resting heart rate, heart rate variability (RMSSD), respiratory rate, SpO2, heart
rate, R-R intervals, and skin temperature.

The Vital Patch device (manufacturer: VitalConnect Inc, San Jose, CA, USA) is adhered
to the chest and provides high quality single-lead ECG readings of heart rate and heart
rate variability. The VitalConnect device wirelessly transmits data from the Vital Patch
sensor to a smartphone and then to the PhysIQ (manufacturer: PhysIQ, Chicago, IL, USA)
cloud for storage and analysis [2]. The firmware version used for PhysIQ was 3.5.1.4. The
patch is equipped with ECG and accelerometer sensors to measure various physiological
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parameters such as heart rate, R-R intervals, respiratory rate, body temperature, skin
temperature, fall detection, activity (including step count), posture (body position relative
to gravity), and sleep stages.

2.3. Study Design

This study included two periods of data collection (Figure 1) from daily life for passive
home-based remote monitoring. The first data collection period included Day 1 through
Day 6. The second data collection period included Day 8 through Day 13. On Day 1, the
participants began wearing all three devices (Whoop 4, Corsano Cardiowatch 287-1B, Vital
Patch) simultaneously. During the first data collection period, the Vital Patch was worn
on the chest. The Whoop 4 was worn on the participant’s non-dominant hand, while the
Corsano Cardiowatch 287-1B was worn on their dominant hand. The devices were worn
for 5 consecutive days and nights, which included at least 1 weekend night. On Day 8, the
participants began the second data collection period wearing all three devices. The Vital
Patch was worn in the designated location on the chest as indicated during the site visit.
The Corsano Cardiowatch 287-1B was worn on the participant’s non-dominant hand, while
the Whoop 4 was worn on their dominant hand. The devices were worn for an additional 5
consecutive days and nights, which included at least 1 weekend night. During the whole
data collection period, on every third day participants were instructed to charge the devices
for at least three hours in the evening.
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Figure 1. Study design, device attachments, and continuous data collection periods.

Participants completed a daily morning questionnaire, prompted at 9 a.m., which
asked two questions: the time at which the participant went to bed the previous night
and the time at which the participant woke up that day. Responses from the morning
questionnaire were collected on Day 2–Day 6 and Day 9–Day 13. A participant was
considered to have completed the study if the participant had completed the two data
collection periods of five consecutive days and nights, daily device assessments, and the
end of study survey.

2.4. Device Usability Assessment

An end-of-study survey was used to evaluate the usability of each device in daily life.
The following usability aspects of each device were assessed on a Likert scale from 1–5
(1 indicates strongly disagree to 5 indicates strongly agree) based on the modified version
of the standardized questionnaire for the system usability scale [37].

(1) I thought it was easy putting the device on and taking it off
(2) I experienced discomfort wearing the device
(3) I experienced trouble sleeping due to the device
(4) My device stayed in place
(5) I would like to use the device frequently
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(6) I found the device easy to use
(7) I needed support of a technical person to be able to use the device
(8) I experienced restrictions in my daily activities due to device
(9) I felt confident wearing the device
(10) I needed to learn a lot of things before I could get going with the device
(11) I found various functions of the device were well integrated (wearing, charging,

application features, etc.)
(12) I found the device very cumbersome to use
(13) I experienced skin irritability wearing the device

3. Data Analysis

3.1. Coverage Assessment

To assess the feasibility of the PPG devices to be used for daily continuous monitoring,
coverage of each PPG device data was calculated in two different ways. The first assessment
focused on the collection of continuous raw PPG/Acceleration data in daily life, and the
second assessment concentrated on the ability of the devices to be used for continuous
beat detection in daily life. For the first assessment, the raw data coverage of each device
was calculated on an hourly basis as a percentage of the available sample data points in
a particular hour to the intended number of samples in this hour. Hourly coverage was
further aggregated into full day (across 24 h) and different parts of the day (midnight to
8 a.m., 8 a.m. to 8 p.m., and 8 p.m. to midnight) for reporting. To assess the feasibility of
the PPG devices for continuous beat detection in daily life, R-R intervals obtained from the
devices were utilized. For simplicity, we use R-R intervals to refer to beat-to-beat intervals
for PPG and R-R intervals for ECG. For coverage estimation, a 5-min epoch length was
considered for the analysis. The data coverage within this epoch was calculated first, and
if there were at least 40% of the data present, this epoch was considered valid. Further,
the processed data hourly coverage was estimated by counting the valid epochs within an
hour divided by the intended possible number of 5-min epochs in that hour. The hourly
coverage was further aggregated into full-day periods (24 h) and specific time intervals for
reporting: midnight to 8 a.m., 8 a.m. to 8 p.m., and 8 p.m. to midnight. The charging times
of the devices were not adjusted in the coverage calculation to simulate real-world daily
life scenarios.

3.2. PPG/ECG Device Data (R-R Intervals) Processing

From each device, valid 5-min epoch R-R interval data were further processed before
feature engineering. The R-R interval data provided by each device were processed first
by sorting it based on the timestamps and removing any duplicates. The R-R intervals
were then cleaned by removing the outliers based on unrealistic physiological values and
ectopic beats to extract the cleaned normal-to-normal (N-N) intervals for robust feature
engineering [38]. The procedure for computing normal-to-normal (N-N) intervals from R-R
intervals consisted of several sequential steps. Initially, R-R interval outliers, defined as
the ones outside of the 300–2000 ms range [4,39], were identified and replaced with NaN
values to clean the data. Subsequently, any NaN values in between the reliable R-R interval
values were interpolated using a linear interpolation. This step ensures continuity in the
data by filling gaps with interpolated values. Following this, ectopic beats, or abnormal
heartbeats, were removed from the interpolated R-R intervals using the Malik method
(where the consecutive interval deviation is more than 20% from the previous one) [40].
This generated a series of N-N intervals representing the time intervals between consecutive
normal heartbeats. However, the ectopic beat removal may introduce new NaN values,
necessitating a second interpolation step. The same interpolation method applied earlier
was utilized again to fill in any remaining NaN values within the N-N intervals. Due
to the validation nature of this work in daily life, the same interpolation technique was
used for all features instead of considering different interpolation techniques for each
HRV feature [41]. The result is a list of interpolated N-N intervals, where physiological
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unrealistic and ectopic beats have been systematically removed, and missing values have
been filled in. This comprehensive pre-processing approach ensures a robust and adaptable
foundation for further heart rate variability (HRV) analysis. However, an ablation study
was also conducted to compare the impact of the current interpolation technique with that
of no interpolation of HRV features (Appendix B).

3.3. Feature Engineering

Cleaned epochs of 5-min N-N intervals from each device were further used to extract
HRV features related to time, frequency, and non-linear domains along with the mean value
of heart rate and N-N intervals. For the further validation analysis, only representative
features from each domain were considered and described in Table 1. More information
regarding feature definitions can be found in the work by Shaffer and Ginsberg [4].

Table 1. List of HR and HRV features, along with their definitions, used in the validation analysis.

HRV features were extracted from 5-min epochs of N-N intervals.

Feature (Units) Domain Definition

Mean HR (BPM) Time The average heart rate.

Std HR (BPM) Time Standard deviation of heart rate

Mean N-N (ms) Time
The mean of the N-N intervals, which are the normal-to-normal intervals or the
time between successive normal heartbeats.

SDNN (ms) Time The standard deviation of the N-N intervals, indicating overall HRV.

SDSD (ms) Time
The standard deviation of successive differences between adjacent N-N intervals,
emphasizing short-term variations.

RMSSD (ms) Time
The square root of the mean of the sum of the squares of differences between
adjacent N-N intervals.

CVSD Time Coefficient of variation of successive differences between adjacent N-N intervals.

CVNN Time Coefficient of variation equal to the ratio of SDNN divided by Mean N-N intervals

LF (ms2) Frequency Low-frequency power spectral density (0.04 to 0.15 Hz)

HF (ms2) Frequency High-frequency power spectral density (0.15 to 0.40 Hz)

LF/HF Frequency A ratio of LF to HF

Sample Entropy Non-linear A non-linear measure that quantifies the complexity or irregularity of the HRV signal

3.4. Factors Affecting the PPG Device Performance

In addition to measuring HR and HRV throughout the full day (from midnight to
next midnight for each day), it is crucial to consider the influence of the body’s circadian
rhythm. This natural rhythm can cause HR/HRV features to vary between day and night,
subsequently affecting their accuracy. Particularly during periods of sleep with minimal
wrist movement, HRV features tend to be more accurate compared to wakeful periods
when daily activities are performed. Morning questionnaire responses were used to crop
the data based on subjective asleep and awake timings for each day.

Moreover, there are several other factors, including data coverage within epochs used
for HRV estimation, postural transitions, activity types, walking vs. non-walking, epoch
length, and device position, which can impact the estimation of PPG derived HR/HRV
features.

Coverage within a 5-min epoch used for HRV estimation: Continuous detection of beats
from PPG raw data without gaps is key for reliable HRV feature calculation. The impact
of R-R data coverage within 5-min epochs was investigated by increasing the coverage
threshold from 40% to 100% with increments of 10%.

Postural transitions: Body posture in daily life can also impact the PPG data reliability.
Postural information obtained from Vital Patch, such as upright, reclined, lying right, lying
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left, prone, and supine information, was used to label each 5-min epoch of data used for
HR/HRV estimation. A specific posture label was assigned based on its dominance within
the 5-min epoch of data in case the participant changed a posture with this 5-min time
interval.

Activity type: Performance of the PPG devices was also assessed under various daily
living activities such as cycling, rest, walking, and running provided by the Corsano device
after processing the accelerometer data.

Walking vs. non-walking: Specifically, walking detected by the chest-worn device (Vital
Patch), which can be more reliable compared to wrist-worn devices, was also used to check
the performance of the PPG devices.

Epoch length: The impact of epoch length on the error rate of HRV estimation during
asleep, awake, and full day periods was explored by using epoch lengths of 10, 30, and 60 min.
Apart from these epoch lengths, whole asleep and awake periods were also investigated.

Dominant vs. non-dominant hand: Five complete days of data from each collection
period from each subject were used to investigate the impact of wearing the PPG devices
on dominant vs. non-dominant hands during the asleep, awake, and full day periods.

3.5. Data Consideration for Reliability Assessment of HRV Features

Reliability of the HRV features was further explored. For reliability assessment, as
shown in Figure 2, the data were considered separately when the device was attached to the
dominant and non-dominant hand. Within each period of device attachment, two separate
full days (24 h) were considered. To compute reliability, the spearman correlation was
performed between HRV estimates obtained from synchronized 5-min epochs between
day 1 and day 2. Similarly, a reliability assessment was performed during the first day
awake/asleep period with the second day awake/asleep period based on the synchronized
5-min epochs of the HRV features.
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3.6. Algorithms for Beat Detection from Raw PPG and ECG Data

Only Corsano provided raw PPG data at 25 Hz frequency. Seven open-source algorithms,
which performed well on PPG data in a previous study [33], were employed to detect beats
from the raw PPG data. A short description of each algorithm is provided in Table 2. The
methodology for beat detection from raw PPG data methodology was adopted from the prior
work [42]. Briefly, raw PPG green signals were subjected to band-pass filtration to remove
extraneous cardiac frequencies. Beats were identified over specific length PPG intervals
with certain overlap. Redundant detections from overlaps were excluded. Segments with
a continuous flat signal exceeding 0.2 s, often due to sensor disengagement or saturation,
were discarded. For validation, the beat (R peaks) detected from the simultaneously recorded
ECG signal by two different beat detectors were used as reference following the previous
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work [33]. The two beat detectors utilized were the ‘jqrs’, which employ the Pan and Tompkins
technique [43,44], and Clifford’s ‘rpeakdetect’ ECG beat detector [42]. Outputs from these
two algorithms were aligned and then merged, with ‘correct’ beats in the merged signal being
those identified by both within a 150 ms interval. Any 20-s segments without consensus
between the two detectors were omitted from the analysis.

Table 2. Brief description of the beat detection algorithms used during validation analysis.

Algorithm Name Description

1. Automatic Beat Detection
(ABD) by [45]

This algorithm computes a Fourier-based power spectral density (PSD) to isolate the signal’s
primary energy bands. Subsequently, the signal undergoes band-pass filtering, emphasizing
distinct heart rate frequencies. This is complemented by derivative-based filtering, which
makes rapid signal transitions prominent. A modification is made to the percentile threshold,
initially set around the 90th percentile in the original algorithm but later modified to the 75th
percentile, to detect peaks in the derivative (75th percentile used in this work). After filtering,
the algorithm identifies pulse peaks. To enhance accuracy, it corrects potential peak location
errors, removes false positives based on interbeat intervals and median heart rate thresholds,
and integrates missing peaks to account for false negatives.

2. Automatic Multi-Scale Peak
Detection (AMPD) by [46]

The PPG signal is first detrended and then segmented into overlapping windows of 6 s in
duration with 20% overall. Within these windows, the algorithm constructs a local maxima
scalogram (LMS) matrix. Rows of the LMS corresponded to scales, spanning from a single
sample up to half of the window’s duration, while columns represent individual PPG samples.
The algorithm updates specific LMS matrix entries to zero when a PPG sample surpasses its
neighboring values at a given scale, indicating a local maximum. By analyzing the LMS, the
algorithm determines the optimal scale (lambda), which represents the scale capturing the
most local maxima. The LMS matrix is then truncated to retain only scales smaller than this
optimal lambda. The final beat detection step identifies beats as those PPG samples that are
recognized as local maxima across all the retained scales in the truncated LMS.

3. Event-Related Moving
Averages (ERMA) by [47]

The algorithm processes the PPG signal with a Butterworth bandpass filter, limiting the
frequency range to 0.5 Hz to 8 Hz. The filtered signal was subsequently squared, ensuring
non-negative values. Two specific moving averages are then applied: the first, with a 111 ms
duration, is designed to emphasize systolic peaks, while the second, spanning 667 ms, makes
individual beats prominent. A threshold is computed as 2% of the squared signal’s mean.
Within 111 ms windows, beats are pinpointed when the first moving average exceeds the sum
of the second moving average and the defined threshold.

4. HeartPy by [48]

This algorithm starts by processing the PPG signal through multiple iterations of squaring
and normalization, emphasizing its peaks. Following this, the signal is subjected to a rolling
mean over a 0.75-s duration. A sliding window approach then segments the signal, with each
window’s size being the product of the window duration and the sampling rate. For
acceptable peak detection, constraints are set with a beats per minute (BPM) range of 40 to
180, and peak-to-peak (PP) intervals were of particular focus. A PP range is established
around the mean PP interval, using either a fixed 300 milliseconds or 30% of this mean to
define the upper and lower thresholds. These thresholds are crucial for discerning acceptable
PP intervals, facilitating the identification of significant peaks. Furthermore, signal segments
with more than three unreliable detections within 10 beats are discarded to ensure the
reliability of the detected peaks.

5. Multi-Scale Peak and Trough
Detection (MSPTD) by [49]

This algorithm operates by segmenting the PPG signal into overlapping windows, each
spanning 6 s with a 20% overlap. Within each window, the algorithm employs the modified
AMPD algorithm. This algorithm initiates by detrending the signal and computing local
maxima and minima scalograms. These scalograms are matrices indicating the presence of
local maxima and minima at varying scales. The method then determines the scales with the
most local maxima and minima and truncates the scalograms accordingly. Peaks and onsets
are identified based on these processed scalograms. After this pulse peak and pulse onset
detection, the algorithm refines the peak and onset indices by searching within a 5% tolerance
of the sampling frequency around the detected positions to pinpoint the exact maxima (for
peaks) or minima (for onsets). After processing all windows, the detected peaks and onsets
are ordered chronologically, with redundant detections discarded to ensure a unique set of
pulse events.
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Table 2. Cont.

Algorithm Name Description

6. Adapted Onset Detector
(qppgfast) by [50]

The algorithm employs a slope sampling approach over a defined window size of 170 ms to
compute the signal’s slope. For peak identification, dynamic thresholds are set. One threshold
is adjusted based on a running peak value observed in the current processing interval, with
this peak value being incremented by one-tenth of its difference from the threshold. A
secondary threshold is established as one-third of the primary threshold. After a peak is
detected, a specific lockout interval (340 ms) is applied, preventing the detection of
subsequent beats for a set duration. Additionally, if no pulse was detected over an extended
period, the primary threshold is reduced, provided it exceeds a minimum limit, to capture
potential low-amplitude beats.

7. Symmetric Projection Attractor
(SPAR) by [51,52]

This algorithm first segments the PPG data into windows, each spanning 20 s. Within each
window, the average cycle length is derived using autocorrelation, due to the periodic nature
of the PPG signal. This technique is bound by an HR range of 40 to 200 BPM, ensuring that
the detected cycle lengths were physiologically plausible. The derived average cycle length
subsequently informs the time delay parameter, which is integral to the symmetric projection
attractor reconstruction (SPAR) method. This method maps the signal into two values, based
on delay coordinates and specific mathematical projections. After a rotation using an optimal
angle, beats are detected by pinpointing crossings of a particular line in the rotated
coordinates. To ensure thorough beat detection, the algorithm adjusted for potential
mismatches between windows and incorporated mechanisms to handle missed or extra beats.

The alignment between PPG and ECG detected beats is not always exact. Therefore, we
used the methodology proposed by Charlton et al. [33]. Briefly, to synchronize the PPG beats
with ECG, the time discrepancy between each ECG beat and its nearest PPG counterpart was
computed. If this difference was less than 150 ms, the beat was deemed accurately identified.
In increments of 20 ms for shifting either PPG or ECG beat sequence, this alignment
procedure was repeated while offsetting the beats by lags ranging from −10 to 10 s. The
offset yielding the most accurate beat identifications was taken as the genuine lag and
utilized to harmonize beat timings.

3.7. Validation Approach and Statistical Analysis

The validation workflow is shown in Figure 3, where the performance of the devices
was assessed based on the provided R-R intervals. Each PPG device feature extracted from
N-N intervals was compared with the ECG-derived features during the same time interval.
All the devices were synchronized based on local UTC time. During this validation analysis,
depending on the coverage and pre-processing of the R-R intervals, HRV features from
various domains were calculated (Table 1). To assess the accuracy of measurements, the
relative error and absolute error were quantified. The relative agreement between HRV
features of the PPG device and ECG was assessed with correlation coefficient. Absolute
agreement between the devices was calculated with the ICC coefficient. The relationship
between the PPG and ECG features was further visualized through the scatter plots. In ad-
dition, to analyze the difference between devices (PPG vs. ECG), Bland–Altman plots were
used, and other validation metrics such as bias (mean error) and 95% limit of agreements
were calculated. The reliability of the HRV features was assessed with the ICC coefficient
within each data collection period for the dominant and non-dominant hands during asleep,
awake, and full day periods. The feasibility of continuous remote data collection in home
settings was assessed by an evaluation of the coverage and usability of devices. Average
values of the coverage and usability along with the standard deviation were reported as
bar plots.
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The performance of the beat detectors on the raw PPG data was assessed by comparing
the detected beats with the reference ECG beats. A tolerance window of ±150 ms as
described in Section 3.6 was used for assessing the correctness of beat detection between
PPG and ECG. For example, if the detected beat from the PPG data is present within this
window of the reference ECG beat, then it is considered to be correctly identified. For full
day, asleep, and awake periods, the numbers of correct beats, reference beats, and PPG
beats were identified to calculate the sensitivity and positive predictive value (PPV). The
harmonic mean of PPV and sensitivity, as well as the F1 score, was used to identify the
best performing beat detectors. Furthermore, for time points corresponding to each beat,
the HR was using the preceding 8 s interval [33]. The performance of HR estimation for
different beat detectors was assessed as mean absolute percentage error (MAPE). All the
performance metrics for the evaluation of beat detectors are reported as median values
along with 95% confidence intervals.

A mathematical formulation of the evaluation metrics is given below.
Mean Absolute Error (MAE): MAE is the average of the absolute differences between

measured (PPG) and true values (ECG), calculated as

MAE =
1

n

n

∑
i=1

|xmeasurement, i − xtrue,i|

where

• xmeasurement,i is the i-th measured value of the epoch,
• xtrue,i is the i-th true value of the epoch,
• n is the total number of measurements.

Mean Relative Error (MRE): MRE measures the average relative error as a percentage
of the true value:

MRE =
1

n

n

∑
i=1

|xmeasurement, i − xtrue,i|

xtrue,i
× 100

Spearman Correlation: This correlation coefficient (ρ) assesses the rank-order relation-
ship between two variables, which is non-parametric and useful when there is a non-linear
relationship between the variables:
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ρ = 1 −
6 ∑ d2

i

n(n2 − 1)

where

• di is the difference between the ranks of xmeasurement,i and xtrue,i

• n is the total number of measurements.

Intra-Class Correlation (ICC): ICC 2,1 (two-way random effects, single measurement)
quantifies the degree of agreement between two sets of measurements, considering both
individual variability and systematic differences:

ICC(2, 1) =
MSR − MSE

MSR + (k − 1)MSE + k(MSC−MSR)
n

where

• MSR is the mean square of rows (subjects)
• MSE is the mean square error (residual)
• MSC is the mean square for columns (devices)
• k is the number of devices
• n is the number of subjects

Sensitivity: The proportion of true positives (TP) correctly identified by the algorithm
to TP and FN (false negative):

Sensitivity =
TP

TP + FN

Positive Predictive Value (PPV): The proportion of predicted positives that are true
positives to TP and FP (false positive):

PPV =
TP

TP + FP

F1 Score: The F1 score is the harmonic mean of precision (PPV) and sensitivity:

F1 = 2 ×
PPV × Sensitivity

PPV + Sensitivity

4. Results

The demographic characteristics for the participating subjects collected at screening
are shown in Table 3. The average age of participants was 46.9 years, with majority (n = 17)
being female (F). Participants had a body mass index in the range of 24.68 ± 3.10 kg/m2.

Table 3. Demographic characteristics of 25 study participants collected at screening.

Demographic Characteristics
Total Participants (n = 25)

(Mean ± Standard Deviation)

M/F (n) 8/17

Age (years) 46.92 ± 16.61

Height (cm) 168.72 ± 10.07

Weight (kg) 70.54 ± 12.40

BMI (kg/m2) 24.68 ± 3.10

Race
White (n = 24)

American Indian or Alaska Native (n = 1)
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4.1. Feasibility of PPG Devices in Daily Life

The feasibility analysis is divided into (1) the coverage analysis of the raw PPG and
the R-R interval data processed by the device and (2) the usability analysis of the PPG
device deployment in daily life.

4.1.1. A Coverage Analysis

The coverage for raw ECG/PPG/Acceleration data and processed R-R interval data is
presented as median value along with min and max values in Table 4. Additionally, the
coverage of the processed R-R intervals is also shown in Figure 4 as average values along
with a 95% confidence interval. Vital Patch provided 100% coverage of the raw ECG data
during most of the study days whenever it was attached to the body. Corsano had similar
coverage for the raw PPG data. However, the Whoop device had slightly less coverage
each day when compared to Corsano.

Table 4. Raw data coverage from all devices—where min, max, and median values are based on the

coverage across all subjects.

Day Timings

Vital Patch
Median [min, max]

Corsano
Median [min, max]

Whoop
Median [min, max]

Raw ECG R-R Raw PPG R-R R-R

Full Day 100 [1, 100] 98 [0, 100] 100 [33, 100] 52 [0, 94] 44 [0, 79]

Midnight to 8 a.m. 100 [1, 100] 100 [0, 100] 100 [33, 100] 88 [0, 100] 77 [0, 100]

8 a.m. to 8 p.m. 100 [1, 100] 98 [0, 100] 100 [39, 100] 31 [0, 93] 19 [0, 68]

8 p.m. to midnight 100 [3, 100] 100 [0, 100] 100 [33, 100] 75 [0, 100] 68 [0, 100]
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As demonstrated in Figure 4 and Table 4, it is clear that the ECG-based device detected
more beats in the data and had better coverage than PPG devices. PPG devices detected
fewer beats during the daytime as compared to night. Therefore, the median coverage
varied from 44–52% during a full day period to 77–88% only during the night. Overall,
Corsano has better coverage for the processed R-R interval data as compared to Whoop.
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4.1.2. Usability Analysis

The second aspect of the feasibility assessment was to investigate the usability of the
wearables. A 13-item questionnaire (Section 2.4) was answered by each participant at the
end of the study, and their responses are shown in Figure 5. The results indicated that all
devices were easy to use, they stayed in place, had low discomfort when wearing, were not
cumbersome, and functioned well. However, for Whoop, participants indicated a slight
need to learn more before one could get going with the device and a need for more technical
support when compared to Corsano. Furthermore, Vital Patch had higher skin irritation,
followed by Whoop and then Corsano.
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of the questions described in Section 2.4.

4.2. Mutual Data for Validation

Based on coverage analysis in Section 4.1.1, Vital Patch had more processed R-R
interval data each day when compared to the Corsano and Whoop. Therefore, it is critical
to understand when the majority of the data are available for the validation. Since validation
could be performed only using data from such epochs, which are considered valid for both
devices under comparison, we computed the number of such mutually valid epochs for
different times a day for Corsano–Vital Patch and Whoop–Vital Patch pairs. Figure 6 shows
the comparison for both Corsano and Whoop with Vital Patch, where each bar corresponds
to the matched number of valid 5-min epochs between an ECG- and PPG-based device
across all participants and days. Figure 6 is further divided into the night, day, and evening.
During night and evening, both devices had more matched data when compared to daytime
for the validation.
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4.3. Performance of the PPG Devices

The results of the comparison of HR/HRV features obtained from PPG devices to the
same features derived from ECG device are shown in Table 5. The performance comparison
is reported based on three time intervals: when participants were asleep, awake, and during
the full day. Scatter plots and Bland–Altman plots showing alignment between the N-N
interval and heart rate are shown in Figure 7.

During the full day period, Whoop had higher error in N-N intervals and HR com-
pared to Corsano. However, both PPG devices had good relative and absolute agreement
in N-N intervals and HR with the ECG device. For time domain HRV features like RMSSD,
and SDNN, both devices performed similarly in terms of their agreements with ECG. In
the frequency domain, both devices had a high error rate during the full day and low
absolute agreement.

The error rate during asleep time was lower than awake time for all HR/HRV features.
The mean error for HR during asleep time was less than one beat and for N-N intervals was
less than 10 ms. However, both devices overestimated the N-N intervals during both awake
and asleep periods when compared to the ECG device. Time domain HRV during asleep
time had errors in a range of 6–10 ms for Corsano, while Whoop had errors in a range of
7–15 ms. For frequency domain features, the error rate was drastically lower during the
asleep time compared to awake time for both devices, the reduction being more in the case
of Corsano than Whoop. Both PPG devices had a lower error rate and good agreement
with the ECG device during asleep time as compared to awake time.
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Table 5. Performance of PPG-based devices compared to ECG for HR and HRV features. Accuracy

between PPG- and ECG-derived measurements was quantified with mean absolute error. Agreement

between PPG- and ECG-derived measurements was quantified with the spearman correlation co-

efficient, ICC coefficient, and Bland–Altman analysis. Bold text for each feature indicates the best

performing device for the specific part of the day.

Time Device
Mean Absolute

Error

Spearman
Correlation ρ

(p-Value)
ICC (p-Value)

Mean Error
(Bias)

Bland–Altman Limits
of Agreement CI 95%

(+, −)

Heart Rate, BPM

Full Day
Corsano 1.36 0.98 (<0.001) 0.97 (<0.001) 1.14 [5.99, −3.71]

Whoop 1.50 0.96 (<0.001) 0.93 (<0.001) 0.80 [7.47, −5.86]

Awake
Corsano 1.84 0.96 (<0.001) 0.95 (<0.001) 1.59 [7.17, −3.98]

Whoop 1.71 0.95 (<0.001) 0.94 (<0.001) 0.90 [7.37, −5.58]

Asleep
Corsano 0.85 0.98 (<0.001) 0.98 (<0.001) 0.65 [4.2, −2.9]

Whoop 1.31 0.96 (<0.001) 0.92 (<0.001) 0.71 [7.38, −5.96]

Variability in Heart Rate (SD of HR), BPM

Full Day
Corsano 1.65 0.73 (<0.001) 0.44 (<0.001) 0.93 [7.03, −5.18]

Whoop 1.92 0.65 (<0.001) 0.35 (<0.001) 0.68 [7.74, −6.38]

Awake
Corsano 1.98 0.56 (<0.001) 0.31 (<0.001) 0.80 [7.6, −6]

Whoop 2.12 0.54 (<0.001) 0.33 (<0.001) 0.16 [7.42, −7.1]

Asleep
Corsano 1.27 0.87 (<0.001) 0.57 (<0.001) 1.04 [6.02, −3.95]

Whoop 1.72 0.75 (<0.001) 0.38 (<0.001) 1.13 [7.74, −5.48]

N−N Intervals, ms (Mean of the N-N intervals)

Full Day
Corsano 13.20 0.98 (<0.001) 0.98 (<0.001) −10.38 [32.33, −53.08]

Whoop 16.04 0.97 (<0.001) 0.96 (<0.001) −9.49 [54.94, −73.92]

Awake
Corsano 17.10 0.97 (<0.001) 0.97 (<0.001) −14.70 [31.88, −61.28]

Whoop 17.93 0.96 (<0.001) 0.96 (<0.001) −10.74 [52.78, −74.26]

Asleep
Corsano 9.04 0.99 (<0.001) 0.99 (<0.001) −5.83 [29.6, −41.26]

Whoop 14.28 0.97 (<0.001) 0.96 (<0.001) −8.33 [56.12, −72.79]

SDNN, ms (SD of the N−N intervals)

Full Day
Corsano 13.89 0.78 (<0.001) 0.69 (<0.001) 4.41 [50.67, −41.85]

Whoop 17.31 0.72 (<0.001) 0.57 (<0.001) 3.18 [64.11, −57.75]

Awake
Corsano 16.47 0.62 (<0.001) 0.55 (<0.001) 1.08 [52.28, −50.12]

Whoop 19.71 0.62 (<0.001) 0.48 (<0.001) −3.01 [62.55, −68.57]

Asleep
Corsano 10.92 0.91 (<0.001) 0.8 (<0.001) 7.91 [45.7, −29.89]

Whoop 15.06 0.82 (<0.001) 0.66 (<0.001) 8.79 [62.11, −44.53]

SDSD, ms (SD of successive differences between adjacent N-N intervals)

Full Day
Corsano 12.52 0.7 (<0.001) 0.65 (<0.001) −9.43 [22.77, −41.64]

Whoop 9.42 0.76 (<0.001) 0.75 (<0.001) −2.96 [26.07, −31.99]

Awake
Corsano 17.99 0.58 (<0.001) 0.43 (<0.001) −15.43 [20.04, −50.9]

Whoop 11.86 0.67 (<0.001) 0.63 (<0.001) −6.45 [24.4, −37.3]

Asleep
Corsano 6.89 0.89 (<0.001) 0.87 (<0.001) −3.57 [18.27, −25.4]

Whoop 7.14 0.86 (<0.001) 0.84 (<0.001) 0.13 [25.46, −25.19]
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Table 5. Cont.

Time Device
Mean Absolute

Error

Spearman
Correlation ρ

(p-Value)
ICC (p-Value)

Mean Error
(Bias)

Bland–Altman Limits
of Agreement CI 95%

(+, −)

RMSSD, ms (Square root of mean of the sum of squares of differences between adjacent N-N intervals)

Full Day
Corsano 12.53 0.7 (<0.001) 0.65 (<0.001) −9.43 [22.78, −41.64]

Whoop 9.42 0.76 (<0.001) 0.75 (<0.001) −2.96 [26.07, −31.99]

Awake
Corsano 17.99 0.58 (<0.001) 0.43 (<0.001) −15.43 [20.04, −50.91]

Whoop 11.86 0.67 (<0.001) 0.63 (<0.001) −6.45 [24.4, −37.3]

Asleep
Corsano 6.89 0.89 (<0.001) 0.87 (<0.001) −3.57 [18.27, −25.4]

Whoop 7.14 0.86 (<0.001) 0.84 (<0.001) 0.13 [25.46, −25.19]

CVSD (Coefficient of variation of successive differences between adjacent N-N intervals)

Full Day
Corsano 0.01 0.66 (<0.001) 0.53 (<0.001) −0.01 [0.03, −0.05]

Whoop 0.01 0.71 (<0.001) 0.66 (<0.001) 0.00 [0.03, −0.04]

Awake
Corsano 0.02 0.49 (<0.001) 0.32 (<0.001) −0.02 [0.03, −0.06]

Whoop 0.01 0.6 (<0.001) 0.54 (<0.001) −0.01 [0.03, −0.05]

Asleep
Corsano 0.01 0.87 (<0.001) 0.82 (<0.001) 0.00 [0.02, −0.03]

Whoop 0.01 0.82 (<0.001) 0.76 (<0.001) 0.00 [0.03, −0.03]

CVNN (Coefficient of variation equal to the ratio of SDNN divided by Mean N-N intervals)

Full Day
Corsano 0.02 0.74 (<0.001) 0.59 (<0.001) 0.01 [0.06, −0.05]

Whoop 0.02 0.68 (<0.001) 0.48 (<0.001) 0.00 [0.08, −0.07]

Awake
Corsano 0.02 0.56 (<0.001) 0.42 (<0.001) 0.00 [0.07, −0.06]

Whoop 0.02 0.57 (<0.001) 0.4 (<0.001) 0.00 [0.08, −0.08]

Asleep
Corsano 0.01 0.9 (<0.001) 0.75 (<0.001) 0.01 [0.05, −0.03]

Whoop 0.02 0.8 (<0.001) 0.57 (<0.001) 0.01 [0.07, −0.05]

LF: variance (power) in HRV in the low Frequency (0.04 to 0.15 Hz), ms2

Full Day
Corsano 392.70 0.76 (<0.001) 0.45 (<0.001) 21.02 [1906.22, −1864.18]

Whoop 427.39 0.7 (<0.001) 0.33 (<0.001) 119.11 [2195.07, −1956.84]

Awake
Corsano 479.81 0.62 (<0.001) 0.34 (<0.001) −41.58 [2002.9, −2086.06]

Whoop 464.56 0.61 (<0.001) 0.32 (<0.001) 44.94 [2069.97, −1980.09]

Asleep
Corsano 282.50 0.89 (<0.001) 0.61 (<0.001) 75.75 [1627.54, −1476.04]

Whoop 386.94 0.78 (<0.001) 0.35 (<0.001) 182.01 [2218.12, −1854.1]

HF: variance (power) in HRV in the High Frequency (0.15 to 0.40 Hz), ms2

Full Day
Corsano 312.58 0.66 (<0.001) 0.29 (<0.001) −49.69 [1519.79, −1619.16]

Whoop 268.87 0.68 (<0.001) 0.25 (<0.001) 63.74 [1769.18, −1641.71]

Awake
Corsano 404.71 0.56 (<0.001) 0.21 (<0.001) −142.96 [1525.31, −1811.23]

Whoop 298.56 0.6 (<0.001) 0.22 (<0.001) 4.81 [1591.43, −1581.81]

Asleep
Corsano 202.24 0.84 (<0.001) 0.43 (<0.001) 34.86 [1351.93, −1282.2]

Whoop 236.42 0.78 (<0.001) 0.28 (<0.001) 112.07 [1845.99, −1621.85]
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Table 5. Cont.

Time Device
Mean Absolute

Error

Spearman
Correlation ρ

(p-Value)
ICC (p-Value)

Mean Error
(Bias)

Bland–Altman Limits
of Agreement CI 95%

(+, −)

Ratio: LF/HF

Full Day
Corsano 1.62 0.65 (<0.001) 0.51 (<0.001) 1.24 [6.17, −3.7]

Whoop 1.34 0.69 (<0.001) 0.59 (<0.001) 0.80 [5.24, −3.65]

Awake
Corsano 2.16 0.55 (<0.001) 0.29 (<0.001) 1.93 [7.6, −3.74]

Whoop 1.58 0.57 (<0.001) 0.44 (<0.001) 1.15 [6.03, −3.72]

Asleep
Corsano 1.13 0.8 (<0.001) 0.73 (<0.001) 0.60 [4.46, −3.26]

Whoop 1.17 0.78 (<0.001) 0.69 (<0.001) 0.51 [4.57, −3.55]

Sample Entropy

Full Day
Corsano 0.41 0.45 (<0.001) 0.4 (<0.001) −0.23 [0.69, −1.15]

Whoop 0.45 0.45 (<0.001) 0.4 (<0.001) 0.21 [1.3, −0.87]

Awake
Corsano 0.46 0.32 (<0.001) 0.26 (<0.001) −0.30 [0.7, −1.29]

Whoop 0.59 0.32 (<0.001) 0.25 (<0.001) 0.41 [1.62, −0.8]

Asleep
Corsano 0.36 0.58 (<0.001) 0.53 (<0.001) −0.17 [0.67, −1.01]

Whoop 0.33 0.65 (<0.001) 0.61 (<0.001) 0.05 [0.88, −0.79]

4.4. Factors Impacting the Performance of a PPG-Based Device

The impact of coverage within epoch, body posture, daily life activities, epoch length,
dominant vs. non-dominant hands, on the performance of the PPG-based device was
explored only for the Corsano device, which provided the raw PPG data. While exploring
the impact of these factors, a relative error in percentage is reported for the representative
HR/HRV features.

We hypothesized that increasing the threshold for quantifying a valid epoch will lead
to a more accurate estimation of HR/HRV features. Therefore, we experimented with the
coverage threshold for a 5-min epoch from 40% to 100% and investigated its impact on
the performance of HR/HRV features as shown in Figure 8. The relative error decreased
for all the HR/HRV features on increasing the coverage. The error rate for RMSSD and
SDNN reduced by approximately around 20% and 10%, respectively. Similar trends were
observed for frequency and non-linear domain HRV features.

The impact of a variety of body postures, such as upright, reclined, lying left and
right, prone, and supine positions, on PPG-derived HR/HRV features was investigated
and presented in Figure 9. In all HR/HRV features, a higher error was observed during the
upright and reclined positions. Specific lying positions played a critical role, such as lying
face down in the prone position, which had a higher error rate compared to the supine
position for the HR/HRV features. Similarly, lying on the right side has higher error than
lying on the left side. The most appropriate position for PPG HRV features engineering was
the lying position and especially lying on the left side. Various repetitive and cyclic daily
living activities such as cycling, walking, and running resulted in a higher error rate in all
the HR/HRV features, as shown in Figure 10. The lowest relative error was observed during
rest, where the SDNN has a relatively lower error than RMSSD. Mobility, here, walking
vs. non-walking, influenced the accuracy of PPG features, as shown in Figure 11. During
walking, the relative error was higher than non-walking for all the HR/HRV features. The
difference in the relative error between the two activities was 10% for SDNN and 15%
for RMSSD. This difference increased further for the frequency and non-linear features as
shown in Figure 11. Wearing the device on the dominant or non-dominant hand did not
exhibit any significant difference (Appendix A).
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The impact of epoch length was explored under the awake (Figure 12A), asleep
(Figure 12B), and full day periods (Figure 12C). Various epoch lengths, such as the default
5 min, 10 min, 30 min, and 60 min, whole awake time during the day, and whole asleep time
during the night for all HR and HRV features estimation, were investigated. Interestingly,
the correspondence of different PPG-derived HR and HRV features to ECG-derived ones
behaves differently under various epoch lengths. The relative error rate increased for
the mean HR and mean N-N intervals under both asleep and awake conditions while
increasing the epoch length from 5 to 60 min. In contrast, for the majority of the time
domain HRV features, the error rate reduced while increasing the epoch lengths. However,
the relative error increased for the SDNN during the asleep period and did not follow the
same trend as during the awake period. Similarly, the frequency domain HRV features also
resulted in a lower error rate while increasing the epoch length. For non-linear features
such as the sample entropy, the relative error went up with the increase in the epoch
length. The asleep period resulted in the lowest relative error for the RMSSD. Again, SDNN
behaved differently than RMSSD, where the SDNN performed well during the awake
period compared to the asleep period.
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4.5. Test–Retest Reliability of the HR and HRV Features in Daily Life

The test–retest reliability of the HRV features obtained from Corsano is shown in
Table 6. Scatter plots for alignment of N-N intervals and HR estimated at the same time at
two different adjacent days are provided in Figure 13 for both dominant and non-dominant
hands. The dominant hand had higher reliability than non-dominant hands under awake,
asleep, and full day periods. For all time domain HRV features, test–retest reliability was
higher during the asleep periods compared to the awake periods. Frequency domain
features also showed higher reliability during the asleep period compared to the awake
period, except the LF/HF ratio, which had higher reliability during the awake period.
Among all features, RMSSD from time domain HRV and HF from the frequency domain
HRV had better reliability.
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Table 6. Reliability assessment of HR and HRV features in daily life. Values in the table indicate

the magnitude of intraclass correlation between Day 1 and Day 2 and their corresponding p-values

in parenthesis.

Feature

Timings of the Day

Full Day Awake Asleep

Dominant Non-Dominant Dominant Non-Dominant Dominant Non-Dominant

Heart Rate 0.72 (<0.001) 0.66 (<0.001) 0.65 (<0.001) 0.47 (<0.001) 0.68 (<0.001) 0.66 (<0.001)

SD HR 0.26 (<0.001) 0.33 (<0.001) 0.25 (<0.001) 0.20 (<0.001) 0.33 (<0.001) 0.35 (<0.001)

Mean N-N 0.76 (<0.001) 0.70 (<0.001) 0.71 (<0.001) 0.55 (<0.001) 0.67 (<0.001) 0.69 (<0.001)

SDNN 0.44 (<0.001) 0.42 (<0.001) 0.31 (<0.001) 0.26 (<0.001) 0.47 (<0.001) 0.42 (<0.001)

SDSD 0.70 (<0.001) 0.61 (<0.001) 0.30 (<0.001) 0.38 (<0.001) 0.77 (<0.001) 0.68 (<0.001)

RMSSD 0.70 (<0.001) 0.61 (<0.001) 0.30 (<0.001) 0.38 (<0.001) 0.77 (<0.001) 0.68 (<0.001)

CVSD 0.63 (<0.001) 0.59 (<0.001) 0.21 (<0.001) 0.31 (<0.001) 0.73 (<0.001) 0.66 (<0.001)

CVNN 0.32 (<0.001) 0.35 (<0.001) 0.20 (<0.001) 0.19 (<0.001) 0.41 (<0.001) 0.41 (<0.001)

LF 0.33 (<0.001) 0.31 (<0.001) 0.22 (<0.001) 0.09 (0.015) 0.34 (<0.001) 0.27 (<0.001)

HF 0.62 (<0.001) 0.59 (<0.001) 0.40 (<0.001) 0.33 (<0.001) 0.65 (<0.001) 0.60 (<0.001)

Ratio: LF/HF 0.39 (<0.001) 0.30 (<0.001) 0.69 (<0.001) 0.50 (<0.001) 0.28 (<0.001) 0.20 (<0.001)

Sample Entropy 0.11 (<0.001) 0.09 (<0.001) 0.05 (0.151) 0.08 (0.035) 0.20 (<0.001) 0.09 (0.001)
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4.6. Performance of Beat Detection Algorithms on the Noisy PPG Sensor Data

A suite of seven beat detection algorithms was investigated to evaluate their per-
formance in analyzing raw PPG signals collected in daily life settings. The performance
of each algorithm to detect beat and mean absolute percentage error (MAPE) for HR es-
timation is shown in Figure 14A,B and Table 7. Considering all the recorded data, the
performance of the algorithms for the beat detection assessed via F1 score appeared to
be similar (Figure 14A). When the performance was evaluated using MAPE for HR esti-
mation, differences between algorithm performance emerged, with only three algorithms,
MSPDT, ERMA, and AMPD, having MAPE lower than 10%. The beat detection F1 score
performance of these algorithms was around 62% with a 95% CI in the range of 44% to
87%. The median sensitivity was 59–61% with a 95% CI in the range of 42% to 95%. The
positive predictive value (PPV) was 63–64%. For HR estimation, apart from MAPE, the
mean absolute error (MAE) for three top-performing algorithms was 7 BPM with a negative
bias of around 2–3 beats. For the interbeat interval estimation, the MAE error for the top
performing algorithms ranged in between 249 ms and 337 ms (Table 7).
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Table 7. Performance metric of PPG beat detectors compared to R-peak detected from ECG in daily life recordings. All the performance metrics are reported as

median values along with 95% confidence intervals.

Task Metric
Beat Detector Selection on the Full Day PPG Data

MSPTD AMPD ERMA ABD SPAR HeartPy qppgfast

Beat Detection

F1 Score 62.54 [45.10, 86.95] 62.18 [44.70, 86.89] 61.81 [44.68, 86.61] 61.49 [44.32, 86.28] 61.03 [44.13, 86.37] 60.58 [42.29, 86.60] 59.48 [43.05, 84.78]

Sensitivity 61.66 [44.48, 94.78] 60.67 [43.60, 89.90] 59.85 [42.91, 86.55] 59.93 [43.07, 86.03] 58.92 [42.51, 85.70] 55.68 [37.23, 84.74] 57.61 [38.82, 84.35]

PPV 63.03 [44.33, 89.79] 63.83 [44.80, 90.02] 64.16 [45.14, 89.29] 63.56 [44.80, 89.19] 64.11 [45.09, 88.79] 66.21 [45.74, 90.51] 61.35 [44.66, 85.20]

HR Estimation, BPM

MAPE 9.31 [1.18, 19.26] 9.89 [1.27, 20.04] 9.49 [1.26, 18.48] 11.06 [1.38, 19.35] 11.12 [3.31, 20.03] 14.85 [1.73, 27.06] 14.89 [6.87, 38.95]

MAE 7.27 [2.31, 15.87] 7.59 [2.33, 18.02] 7.24 [2.38, 16.11] 8.44 [2.99, 17.74] 8.89 [2.86, 19.29] 11.28 [3.51, 23.48] 11.57 [4.83, 25.78]

Bias −1.91 [−9.83, 3.58] −3.58 [−12.96, 1.00] −3.46 [−14.35, 1.48] −3.78 [−13.00, 2.24] −5.63 [−16.08, −0.79] −8.61 [−20.71, −0.78] −1.91 [−11.15, 15.63]

LOA [12.29, 57.37] [12.27, 52.21] [11.96, 38.47] [13.89, 42.02] [12.55, 44.79] [16.68, 50.11] [19.77, 60.13]

Inter Beat Interval, ms

MAE 249.68 [118.52, 439.18] 269.88 [133.50, 461.53] 337.57 [139.99, 895.76] 355.39 [182.3, 644.1] 309.57 [174.3, 516.9] 637.15 [286.8, 2143.03] 951.21 [259.5, 2949.68]

Bias −54.27 [−249.82, 61.42] −23.79 [−232.97, 97.49] 25.84 [−168.32, 651.07] 42.92 [−229.3, 342.66] 21.54 [−207.3, 165.29] 328.71 [−23.4, 1938.50] 564.21 [−19.66, 2621.57]

LOA [620.64, 3228.51] [664.93, 3276.37] [792.02, 10956.50] [844.73, 7507.64] [815.26, 3363.01] [1413.30, 13,584.81] [2692.00, 27,274.76]
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The top-performing algorithm, MSPDT, which is a modified version of the AMPD
algorithm, was explored further on a subset of data corresponding to the asleep and awake
periods separately. The results are shown in Figure 14C,D and Table 8. The F1 score for
beat detection with MSPTD went up from 55% during the awake period to 89% during
the asleep period. The sensitivity of the MSPTD during asleep was 89% and 54% during
the awake period. Furthermore, the PPV was also 89% during the asleep and 57% during
the awake period (Figure 14C). The MAPE for HR estimation significantly reduced from
12.58% during the awake period to 1.78% during the asleep period (Figure 14D). The MAE
for HR estimation was around 1 beat during asleep and 10 beats during the awake period.
Additionally, MSPTD MAE for the interbeat intervals was also significantly reduced to
54 ms during the asleep period compared to 220 ms during the awake period.

Table 8. Top performing PPG beat detector (MSPTD) performance under awake and asleep periods.

All the performance metrics are reported as median values along with 95% confidence intervals.

Task Metric
MSPTD Performance During Awake and Asleep Period

Awake Asleep

Beat Detection

F1 Score 55.90 [43.26, 83.75] 89.25 [50.91, 99.37]

Sensitivity 54.76 [43.79, 86.48] 89.94 [50.85, 99.46]

PPV 57.62 [41.18, 86.27] 89.45 [50.98, 99.34]

HR Estimation, BPM

MAPE 12.58 [3.17, 22.91] 1.78 [0.65, 18.60]

MAE 10.01 [3.67, 20.84] 1.12 [0.41, 14.47]

Bias −3.44 [−15.47, 3.29] 0.03 [−4.39, 7.66]

LOA [14.64, 59.31] [2.44, 75.21]

Inter Beat Interval, ms

MAE 219.99 [107.23, 421.95] 53.80 [25.94, 205.58]

Bias 67.29 [−243.54, 189.07] −4.50 [−58.29, 65.19]

LOA [450.25, 2534.76] [129.31, 1457.40]

5. Discussion

In this paper, we performed a systematic validation of physiological measures derived
from PPG devices collected over multiple days in free living settings, which, to the best
of our knowledge, is the first of its kind. Specifically, we investigated the feasibility of the
remote collection of physiological measures from PPG devices in daily life, the usability
of such devices, and the accuracy of derived features at different time intervals of day:
awake, asleep, or throughout the day. We examined the impact of body posture, mobility,
and data coverage on the accuracy of the features and evaluated their test–retest reliability.
Furthermore, we quantified the performance of various algorithms to detect heartbeats
from noisy raw PPG signals.

5.1. Feasibility of PPG Data Collection and Device Performance

Our results showed that users found PPG devices comfortable and easy to use, re-
sulting in positive usability ratings. While the ECG data yielded 100% coverage for most
days and consistent beat detection throughout the day, PPG devices showed variability in
coverage and detected fewer beats at daytime compared to nighttime. The prior work has
shown coverage rates ranging from 70% to 90% for estimating heart rate and 50% to 90%
for estimating pulse arrival time (PAT) or pulse amplitude variability (PAV), with variations
based on sensor location and quality [53].

Corsano generally had a lower error in estimating N-N intervals and HR compared
to Whoop. Both devices showed good relative and absolute agreement with ECG-derived
features and performed similarly for time-domain HRV features like RMSSD and SDNN.
In the frequency domain, both devices showed higher error rates and lower absolute
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agreement. This is in line with the previous work, which showed that the frequency-domain
HRV features explored previously in elderly vascular patients, especially those associated
with high-frequency content, were systematically overestimated [54]. This overestimation
resulted in a relatively large bias, indicating that care should be taken in interpreting these
parameters when derived from wrist-worn wearable devices. The error rates in our work
were lower during asleep than awake periods for all HRV features. Corsano demonstrated
superior performance, particularly during asleep periods, with mean errors for heart rate
and N-N intervals being minimal. This finding from Corsano and Whoop aligns with
the general observation that wearable PPG devices tend to perform better in situations
with minimal motion, such as during sleep [28,55]. However, these conclusions cannot
be generalized to all PPG devices without further comparative evaluations. Both devices,
however, tended to overestimate N-N intervals across all conditions. This is due to the
inherent limitations of PPG technology in accurately capturing beat-to-beat intervals under
varying conditions. Motion artifacts, diverse skin types, and signal crossover, among others,
could contribute to such potential inaccuracies in PPG-derived measurements [56].

5.2. Factors Impacting the Performance of PPG-Based Devices and Derived Features

The performance of PPG devices was influenced by several factors. The coverage
within a 5-min epoch significantly impacted the accuracy of HR/HRV features. Increasing
the epoch coverage from 40% to 100% decreased the relative error in HR/HRV features,
with a 20% reduction in error rate for RMSSD and over 10% for SDNN. The estimation
of SDNN showed small biases when compared with the ECG reference, while RMSSD
exhibited systematic overestimation in the range of 10%. This indicates that the accuracy
and reliability of HRV measurements from PPG can significantly vary based on the quality
and coverage of the data [54].

Human body posture during daily life activities influenced the estimation of PPG-
derived features. Higher error rates in HR/HRV features were observed in upright and
reclined positions compared to specific lying positions. The prone position showed a
higher error rate than the supine position. Lying on the right side resulted in higher
errors than lying on the left side, irrespective of whether the device was on the right or
left hand. The most suitable position for PPG HRV features engineering was the lying
position, particularly on the left side. It is likely that during upright positions, there is more
movement in the upper body and hands compared to lying positions. Daily life activities
like cycling, walking, and running resulted in higher error rates in all PPG HR/HRV
features. The difference in relative error between walking and non-walking was significant,
nearly 10% for SDNN and 15% for RMSSD. This difference increased further for frequency
and non-linear HRV features, suggesting that PPG data should ideally be recorded during
non-walking activities for more accurate results. According to a prior study, absolute
error across wearable devices was 30% higher on average during motion than during
rest for HR/HRV [56]. Another study showed that wearable devices can detect heart
rates accurately under resting conditions; however, daily life physical activities impact the
performance of these PPG-based devices [57].

Different epoch lengths (5, 10, 30, 60 min) for HR and HRV feature estimation were
analyzed. There was an increase in error for mean HR and N-N intervals with longer
epochs and a decrease in error for most time domain HRV features. For frequency domain
and non-linear features, error generally increased with longer epochs. The lowest error for
RMSSD was noted during the asleep period. Short-term spectral HRV analysis, typically
conducted over a few minutes, is useful for tracking rapid changes in cardiac autonomic
function. In contrast, long-term spectral HRV analysis, ranging from an hour to a full day,
provides a more stable assessment of autonomic function, capturing longer fluctuations and
better predicting prognosis. However, long-term analyses are more resource-intensive and
susceptible to noise and variability due to environmental factors and daily activities [58].
Furthermore, HRV indices vary significantly across distinct sleep epochs, challenging the
practice of aggregating HRV indices across these epochs from the whole asleep period.
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The previous work [59] found that both rapid eye movement (REM) and non-REM stage 2
(N2) sleep epochs showed a change in HRV indices throughout the night. This variabil-
ity suggests that aggregating HRV indices across sleep stages could obscure important
transient effects.

5.3. Reliability of the PPG-Based Assessments in Daily Life

Different levels of reliability based on hand dominance and state of consciousness
(awake/asleep) were observed in this study. Generally, the features extracted from a sig-
nal recorded from the dominant hand showed higher reliability across all periods. Time
domain HRV features exhibited greater test–retest reliability during asleep periods than
awake periods. Similarly, frequency domain HRV features, except the LF/HF ratio, showed
better reliability during asleep periods. In contrast, the LF/HF ratio had improved reliabil-
ity during awake periods. Non-linear HRV features displayed better reliability with the
dominant hand during asleep periods. In the context of HRV reliability during repetitive
low-intensity activities, a study found that the time interval between repeated measure-
ments did not influence the HRV values, indicating HRV’s reliability under different low
intensity activities [60]. Furthermore, the previous work [61] also showed HRV’s potential
as a reliable measure in varying states of consciousness, supporting our observed findings
of varying levels of HRV reliability based on the state of consciousness (awake/asleep).

5.4. Algorithms for Beat Detection from Noisy PPG Sensor Data During Daily Life

In the evaluation of algorithms for processing noisy PPG data, three out of seven
algorithms—MSPDT, ERMA, and AMPD—stood out by achieving heart rate estimation
accuracy with a MAPE below 10%. Furthermore, MSPDT showed significantly better
performance during asleep than when awake, with improvements in beat detection and a
substantial reduction in both MAPE and MAE for inter-beat intervals. In terms of algorith-
mic logic, the AMPD algorithm’s [46] strength lies in its local maxima scalogram matrix,
which identifies optimal scales for capturing the most local maxima in a PPG signal. This
scale-based approach allows for more precise beat detection amidst variable signal quality.
ERMA [47] uses Butterworth bandpass filtering and applies specific moving averages to
emphasize systolic peaks and individual beats. This method enhances the signal’s features
relevant for accurate beat detection, even in the presence of noise. MSPDT [49] employs a
modified version of the AMPD algorithm, optimizing the detection of local maxima and
minima in PPG signals. This approach is particularly effective in differentiating true signal
peaks from noise, which is crucial in noisy environments. The previous work also highlights
the importance of choosing the right PPG beat detector algorithm, noting that algorithms
like MSPDT show complementary performance characteristics in different conditions, such
as rest and exercise, and in different patient demographics [33,62]. More details on the
MSPDT algorithm and their implementation can be found in a prior work [63].

5.5. Key Insights and Recommendations

This study provides crucial insights into the use of PPG devices for HRV monitoring
in daily life settings. It reveals that while PPG devices like the Corsano and Whoop show
reasonable accuracy in comparison to ECG data, especially during sleep, their performance
is affected by various factors such as data coverage, body posture, activity types, and
epoch length. Time domain HRV features exhibit higher reliability during asleep periods.
Frequency domain features, except for the LF/HF ratio, show better agreement during
asleep periods. Additionally, algorithms like MSPDT, ERMA, and AMPD are effective in
processing noisy PPG data, with MSPDT being particularly effective during asleep periods.

Based on these insights, several recommendations are proposed. There is a need
for manufacturers to enhance data coverage and optimize algorithms to improve PPG
device accuracy, particularly during daytime activities. Emphasis should be placed on
design aspects like sensor placement and stability to minimize motion artifacts. Users and
clinicians should be informed of the optimal conditions for PPG device use, understanding
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their limitations, especially during high-intensity activities. Future research should focus
on reducing the impact of motion artifacts and other external factors on PPG data quality
and developing more robust algorithms for various real-life conditions. Finally, while
PPG devices offer a convenient means for HRV monitoring, caution is advised in inter-
preting data for clinical decisions, especially in scenarios where high precision is required.
These recommendations highlight the potential of PPG devices in HRV monitoring while
acknowledging the necessity for further improvements in technology and usage guidelines.

5.6. Study Limitations

The study presents several limitations. It focused on healthy individuals, limiting its
assessment to the patient population. The scope of this work has been limited to two PPG
devices, and future work should explore a broader range of PPG technologies, such as
those worn on fingers. Future work should also include heterogenous demographics to
assess the impact of skin tone, which has not been investigated in this work. In this study,
the impact of charging on data coverage has not been explored, which may be investigated
in future studies through the collection of self-reported questionnaires on participant’s
charging times or duration throughout the study. Moreover, the use of signal-processing-
based beat detectors, while reliable, highlights the necessity for the development of novel
algorithms. These new algorithms would be instrumental in enhancing beat detection
accuracy in challenging scenarios, marking a key direction for future advancements in
wearable health technology.

6. Conclusions

This work evaluated the performance of wearable PPG devices for HR and HRV
monitoring in daily life settings, thus enhancing the applicability of our findings to real-
world scenarios, which is vital for both consumer and clinical applications. Our results
showed that, overall, PPG-based devices showed promise in monitoring physiological
features. The data coverage of PPG devices was lower during active daytime hours, and
beat detection capability was noticeably diminished during the day. Data coverage and
beat detection accuracy were high, especially when the users were sleeping. Agreement
varied by coverage threshold, epoch length, body posture, and activity type. Users found
the devices comfortable and user-friendly, resulting in good positive usability ratings. A
MSPDT algorithm performed best in detecting beats from noisy raw PPG signals. The
study recommends optimal PPG data collection strategy and analysis methodologies that
should be employed in a clinical trial where such devices may be used for remote health
monitoring to minimize estimation error of HR and HRV and thus aid in accurate clinical
decision making.
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Appendix A. Impact of Dominant vs. Non-Dominant Hand on PPG Device Performance

Impact of the dominant vs. non-dominant hand wearing position on the accuracy
of PPG derived HR/HRV features was explored during awake (Figure A1A), asleep
(Figure A1B), and full day periods (Figure A1C). Overall, for all the HR/HRV features, the
difference between the dominant and non-dominant hands was not significant. During the
awake period, the dominant hand had slightly higher error for time domain HRV compared
to the non-dominant hand. However, during the asleep period, the non-dominant hand
had a slightly higher error compared to the dominant hand for all HRV features. During
the full day period, the difference between the dominant and non-dominant hand was
negligible.
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N-N Intervals on the Accuracy of the HRV Features (e.g., SDNN, RMSSD)

This topic of signal preprocessing and its impact on heart rate variability (HRV) metrics
has already been investigated in greater detail, particularly in a study such as “Effects of
Missing Data on Heart Rate Variability Metrics” by [41]. According to this paper, “The
optimal correction methodology for HRV metrics varies: correction without gap filling is superior
for SDNN, RMSSD, and Poincaré plot metrics when missing beats occur predominantly in bursts,
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while gap-filling methods are advantageous for instances of sporadic missing beats. Gap-filling
methodologies achieved optimal performance regarding frequency-domain parameters”. There are
mixed results in terms of which features to interpolate. This study [41] highlights that
different interpolation techniques (including linear interpolation) have varying effects
on HRV metrics, depending on the nature of the missing data. For example, while linear
interpolation works well for scattered missing beats, other approaches may be more suitable
for burst-type data loss. However, to simplify the preprocessing for our validation study,
we opted to use linear interpolation for all HRV features rather than adopting different
interpolation strategies for each feature. We prioritized the practical application in real-
world settings, allowing for typical interruptions like motion artifacts or signal dropouts,
with a 40% data presence threshold per epoch to ensure robustness. Additionally, an
ablation study comparing SDNN and RMSSD metrics, with and without interpolation,
showed improved results with longer epoch coverage, as seen in Table A1.

Table A1. Impact of interpolation and no-interpolation on the performance of the HRV features (e.g.,

SDNN, RMSSD) when extracted from a PPG-based device and compared with an ECG-based device.

Time
Interpolation/

No-Interpolation
Mean Absolute

Error

Spearman
Correlation
ρ (p-Value)

ICC (p-Value) Mean Error (Bias)
Bland–Altman Limits
of Agreement CI 95%

(+, −)

SDNN, ms (SD of the N-N intervals)

Full Day
Interpolation 13.89 0.78 (<0.001) 0.69 (<0.001) 4.41 [50.67, −41.85]

No-Interpolation 12.67 0.80 (<0.001) 0.72 (<0.001) 4.36 [46.60, −37.87]

Awake
Interpolation 16.47 0.62 (<0.001) 0.55 (<0.001) 1.08 [52.28, −50.12]

No-Interpolation 14.92 0.66 (<0.001) 0.59 (<0.001) 1.53 [48.22, −45.15]

Asleep
Interpolation 10.92 0.91 (<0.001) 0.80 (<0.001) 7.91 [45.7, −29.89]

No-Interpolation 10.09 0.92 (<0.001) 0.82 (<0.001) 7.34 [42.07, −27.37]

RMSSD, ms (Square root of mean of the sum of squares of differences between adjacent N-N intervals)

Full Day
Interpolation 12.53 0.7 (<0.001) 0.65 (<0.001) −9.43 [22.78, −41.64]

No-Interpolation 16.76 0.65 (<0.001) 0.53 (<0.001) −10.97 [38.31, −60.25]

Awake
Interpolation 17.99 0.58 (<0.001) 0.43 (<0.001) −15.43 [20.04, −50.91]

No-Interpolation 23.98 0.50 (<0.001) 0.32 (<0.001) −18.92 [35.92, −73.75]

Asleep
Interpolation 6.89 0.89 (<0.001) 0.87 (<0.001) −3.57 [18.27, −25.4]

No-Interpolation 9.13 0.85 (<0.001) 0.79 (<0.001) −3.16 [30.86, −37.18]

The ablation study in Table A1 shows that for SDNN, no-interpolation slightly im-
proves performance, especially during awake periods, while RMSSD performs better with
interpolation, particularly when handling larger data gaps. These findings confirm our
methodology’s robustness, suggesting that no-interpolation may be beneficial for SDNN,
but linear interpolation helps manage RMSSD variability due to missing data.
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