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Summary
Background Unwitnessed out-of-hospital cardiac arrest is associated with low survival chances because of the delayed 
activation of the emergency medical system in most cases. Automated cardiac arrest detection and alarming using 
biosensor technology would offer a potential solution to provide early help. We developed and validated an algorithm 
for automated circulatory arrest detection using wrist-derived photoplethysmography from patients with induced 
circulatory arrests.

Methods In this prospective multicentre study in three university medical centres in the Netherlands, adult patients 
(aged 18 years or older) in whom short-lasting circulatory arrest was induced as part of routine practice (transcatheter 
aortic valve implantation, defibrillation testing, or ventricular tachycardia induction) were eligible for inclusion. 
Exclusion criteria were a known bilateral significant subclavian artery stenosis or medical issues interfering with the 
wearing of the wristband. After providing informed consent, patients were equipped with a photoplethysmography 
wristband during the procedure. Invasive arterial blood pressure and electrocardiography were continuously 
monitored as the reference standard. Development of the photoplethysmography algorithm was based on three 
consecutive training cohorts. For each cohort, patients were consecutively enrolled. When a total of 50 patients with 
at least one event of circulatory arrest were enrolled, that cohort was closed. Validation was performed on the fourth 
set of included patients. The primary outcome was sensitivity for the detection of circulatory arrest.

Findings Of 306 patients enrolled between March 14, 2022, and April 21, 2023, 291 patients were included in the data 
analysis. In the development phase (n=205), the first training set yielded a sensitivity for circulatory arrest detection of 
100% (95% CI 94–100) and four false positive alarms; the second training set yielded a sensitivity of 100% (94–100), 
with six false positive alarms; and the third training set yielded a sensitivity of 100% (94–100), with two false positive 
alarms. In the validation phase (n=86), the sensitivity for circulatory arrest detection was 98% (92–100) and 11 false 
positive circulatory arrest alarms. The positive predictive value was 90% (95% CI 82–94).

Interpretation The automated detection of induced circulatory arrests using wrist-derived photoplethysmography is 
feasible with good sensitivity and low false positives. These promising findings warrant further development of this 
wearable technology to enable automated cardiac arrest detection and alarming in a home setting.

Funding Dutch Heart Foundation (Hartstichting).

Copyright © 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.

Introduction 
Out-of-hospital cardiac arrest (OHCA) is a leading cause 
of global mortality.1–3 The fast recognition of cardiac 
arrest and initiation of cardiopulmonary resuscitation 
are key to survival.4,5 Over the past decade, survival to 
hospital discharge has improved to up to 23% and is 
probably related to the introduction of public access 
defibrillators and smartphone-activated volunteer 
responders.1,2,6–8 However, for people with unwitnessed 
cardiac arrest (up to 50% of all patients with cardiac 
arrest), survival chances are poor (<5%), because the 
emergency medical chain is activated too late in most 
cases.1,9,10

Automated cardiac arrest detection and alarming 
might catalyse the early help for people with unwitnessed 
cardiac arrest and shorten treatment delays for people 
with witnessed cardiac arrest. Most people with OHCA 
were not identified as high risk before the event and were 
therefore not protected by implantable cardioverter 
defibrillators (ICDs).11,12 Wearable biosensor technologies 
are widely used in the current era to monitor health 
status, both by consumers and as a part of remote patient 
monitoring.13 If these become suitable to automatically 
detect and alarm in the case of cardiac arrest, this would 
allow earlier help and could improve OHCA survival 
chances.14
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There are sparse data from proof-of-concept studies on 
the use of wearable biosensors for automated cardiac 
arrest detection, but no such wearable biosensor is 
available yet.15 The studies had a small study population, 
and often used simulated data sets, without validation of 
their findings. Moreover, it is questionable whether the 
application of electrocardiographic (ECG) sensors is 
feasible for continuous long-term monitoring.13 Photo-
plethysmography is a sensor technique that is used in 
smartwatches to monitor the heart rate at the wrist.13 It is 
non-invasive, easy-to-use, affordable, and could detect 
circulatory arrest on the basis of the absence of pulsatile 
flow. Previous animal studies have shown the feasibility 
to detect haemodynamically unstable arrhythmias using 
photoplethysmography sensors.16,17 On the basis of these 
data, we hypothesised that an algorithm using wrist-
derived photoplethysmography could accurately detect 
circulatory arrest.

To enable automated cardiac arrest detection and 
activation of the emergency medical system, medical 
reliability is essential, with excellent sensitivity and low 
false positives. In the DETECT project, an existing wrist-
band for remote monitoring is further developed to 
enable automated cardiac arrest detection and alarming 
during daily life using multiple sensor technologies 
including wrist-derived photo plethysmo graphy. The 
present DETECT-1 study is a prospective multi centre 
study to develop and validate a photo plethysmography 
based algorithm for automated circulatory arrest 
detection in patients with induced circulatory arrest.

Methods 
Study design and participants 
DETECT-1 is a prospective multicentre study in adult 
patients (aged 18 years or older) in whom short-lasting 
circulatory arrest was induced as part of routine practice 
during transcatheter aortic valve implantation (TAVI), 
subcutaneous ICD (S-ICD) implantation, or ventricular 
tachycardia ablation. The exclusion criteria were a 
known bilateral significant subclavian artery stenosis or 
medical issues interfering with the wearing of the 
wristband. The study was conducted at three university 
medical centres in the Netherlands between 
March 14, 2022, and April 21, 2023, and was set up by 
research consortium DETECT consisting of Radboud 
University Medical Center (Nijmegen, the Netherlands), 
Erasmus MC Cardiovascular Institute, University 
Medical Center Rotterdam (Rotterdam, the Netherlands), 
Reinier de Graaf Hospital (Delft, the Netherlands), and 
Corsano Health (The Hague, the Netherlands). 
Consecutive patients who met the inclusion criteria were 
selected for the study. The study protocol was approved 
by the Medical Research Ethics Committee Netherlands 
East. Written informed consent was obtained from 
participants before inclusion.

Study procedures and data collection
Study participants were equipped with a wrist-worn 
photoplethysmography device (CardioWatch 287–2, 
Corsano Health, The Hague, the Netherlands) during the 
TAVI procedure, S-ICD implantation, or ventricular 

Research in context

Evidence before this study

We searched PubMed for research published in English between 

database inception and Aug 21, 2023, with search terms 

expressing cardiac or circulatory monitoring (eg, “automated 

detection”, “wearable”, “photoplethysmography”, and 

“continuous monitoring”) in combination with search terms 

comprising cardiac arrest (eg, “out-of-hospital cardiac arrest”, 

“OHCA”, “unwitnessed”, and “early cardiopulmonary 

resuscitation”). In September, 2022, a systematic review was 

published, summarising the existing evidence on innovative 

biosensor technologies for early detection of out-of-hospital 

cardiac arrest (OHCA). Among the four included studies, three 

studies investigated wearable devices, of which one older study 

used mechanical plethysmography and two studies used 

electrocardiography as the main sensor technology. Results 

were obtained in small sample sizes and real-world data were 

absent. The other study used breathing sounds during sleeping 

to detect cardiac arrest. For photoplethysmography, the 

feasibility to detect haemodynamic instability has been shown 

in animal studies. In addition, photoplethysmography is 

proposed for the detection of a return of spontaneous pulses 

during heart rhythm checks during cardiopulmonary 

resuscitation.

Added value of this study

The DETECT programme is set up to develop a wearable 

wristband-based full technological solution for automated 

cardiac arrest detection and alarming in a home setting. 

DETECT-1 is a prospective multicentre study to develop and 

validate the photoplethysmography based circulatory arrest 

detection algorithm using patient data of induced circulatory 

arrests. Relying solely on photoplethysmography data, induced 

circulatory arrest was detected with excellent sensitivity and 

low false positives.

Implications of all the available evidence

Wearable biosensor technologies might offer a technological 

solution for automated cardiac arrest detection and alarming. 

If available, this potential breakthrough technology could 

markedly improve survival chances from unwitnessed OHCA. 

DETECT-1 is the first prospective study developing and 

validating a circulatory arrest detection algorithm in a large 

sample of patients with true circulatory arrests and with non-

cardiac arrest data that includes fragments with noise and 

cardiac arrhythmias. The promising results warrant further 

development of this wearable technology to enable cardiac 

arrest detection in a home setting.

For the study protocol see www.

detect-study.com/partners/

participating-centers/
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tachycardia ablation. Before the start of the procedure, the 
wristband was applied. The wristband was worn on the 
left wrist; in cases where there was no space on the left 
side (related to the insertion of other lines—eg, the arterial 
line), the right wrist was used. Photoplethysmography 
data (multi-wavelength [paired green, red, and infrared 
sensors]; sample frequency 32 Hz or 128 Hz, whichever 
was available [all photoplethysmography data were down-
sampled to 32 Hz before the data analysis]) were recorded 
during the entire procedure and sent by a Bluetooth-
connected smartphone (Samsung Galaxy A40, 
Android OS, Samsung Electronics, Seoul, South Korea) to 
a protected cloud. As a reference standard, arterial blood 
pressure was monitored through the cannulation of a 
peripheral artery (radial or femoral artery) or by measuring 
central aortic pressure through the catheter, or both. 
Additionally, ECG data were continuously collected and 
stored (ICM+ software, University of Cambridge, 
Cambridge, UK, or Sensis software, Siemens Healthineers, 
Erlangen, Germany). Baseline variables, including age, 
sex, skin type (Fitzpatrick scale), and arm hair density, 
were collected.18,19

Event definition
Induced circulatory arrests were defined as follows. First, 
for TAVI procedures, induced circulatory arrests were 
defined as rapid ventricular pacing during aortic balloon 
inflation; this results in short-lasting circulatory standstill 
and is routinely performed during balloon-expandable 
valve placement, and balloon dilatation before or after 
the valve implantation (figure 1). In cases where balloon 
dilatation was not performed, patient data were used as 
non-circulatory arrest data. Second, for S-ICD procedures, 
induced circulatory arrests were defined as the induction 
of ventricular fibrillation using a 50 Hz alternating 
current burst for 4–10 s during defibrillation testing. And 
third, for ventricular tachycardia ablation, induced 
circulatory arrests were defined as the induction of 
haemodynamically unstable ventricular tachycardia 
(mean arterial pressure ≤45 mm Hg or absence of 
pulsatile flow [pulse pressure ≤15 mm Hg]) as established 
using invasive arterial blood pressure measurements.20–22

Event times were annotated during the procedures by 
the catheterisation laboratory personnel and confirmed 
by the assessment of ECG data afterwards (RE and JLB). 
All other photoplethysmography data where reference 
recordings were assessable, including data from patients 
without any circulatory arrest induction, were labelled 
as non-circulatory arrest data, except for periods 
of spontaneous haemodynamic instability, defined as 
invasive mean arterial pressure of 45 mm Hg or less, 
or the absence of pulsatile flow (pulse pressure 
≤15 mm Hg).20–22 These episodes consisted of TAVI 
procedure-related complications including severe haemo-
dynamic instability or non-induced cardiac arrests, or 
were related to the inflation of the blood pressure cuff at 
the same arm as where the wristband was applied.

Data processing and algorithm development
The photoplethysmography signals of the two green 
photoplethysmography channels were averaged and used 
for the development of the circulatory arrest detection 
algo rithm based on photoplethysmography. The photo-
plethysmography algorithm was developed on the basis 
of three consecutive training cohorts to enable algorithm 
refinement. For each cohort, patients were consecutively 
enrolled. When a total of 50 patients with at least one 
event of circulatory arrest were enrolled, that cohort was 
closed. The fourth iteration was used as a final algorithm 
evaluation (labelled the validation phase; approximately 
a third of all events). For the final evaluation of the 
algorithm, no changes were made to the algorithm, and 
photo plethysmography and reference data were 
separately assessed—namely, the algorithm developer 
(KE) was masked to event annotations, blood pressure, 
and ECG data; and assessors of the reference data (RE 
and JLB) were masked to photoplethysmography data 
and circulatory arrest alarms.

The photoplethysmography signal was analysed as 
follows. First, a second-order Butterworth band-pass 
filter with a frequency range of 0·5–4·0 Hz was applied 
to remove low-frequency and high-frequency noise. 
Then, for every patient, the amplitude of the baseline 
photo plethysmography signal was established and used 
to define a patient-specific threshold for potential 
circulatory arrest. When the individual photo-
plethysmography peaks (corresponding to cardiac cycles) 
of the continuous photoplethysmography signal 
decreased below this threshold, these peaks were 

Figure 1: Example of a circulatory arrest induction in a patient in the TAVI group

Rapid ventricular pacing with aortic balloon inflation during TAVI resulted in a short-lasting circulatory arrest (total 

duration 14 s). The electrocardiogram signal is represented in blue, the invasively measured arterial blood pressure 

in red, and the photoplethysmography signal in green. The initial heart rhythm was a sinus rhythm with a baseline 

blood pressure of 130/50 mm Hg. After the initiation of rapid ventricular pacing, the blood pressure decreased, and 

during aortic balloon inflation (in the middle of the figure) there was no pulsatile flow. After aortic balloon 

deflation and the discontinuation of rapid ventricular pacing, the patient regained sinus rhythm, and the blood 

pressure returned to normal levels. The markings in the photoplethysmography signal indicate the moment of 

detection and termination of the circulatory arrest alarm generated by the developed algorithm. 

TAVI=transcatheter aortic valve implantation.

Electrocardiogram

Arterial blood pressure

Photoplethysmography
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assessed according to predefined signal quality criteria. 
This signal quality index consists of a combination of 
signal features that identify whether individual 
photoplethysmography peaks conform to the normal 
shape of a photoplethysmography wave.23 A signal 
amplitude of less than the threshold combined with 
a poor signal quality index for 5 s or longer resulted in 
a circulatory arrest alarm. An alarm was terminated after 
the detection of a restoration of the pulsatile 
photoplethysmography signal. The assessment of 
circulatory arrest alarms was performed during post-
processing. Between the consecutive iterations, ampli-
tude thresholds and photoplethysmography quality 
criteria were adapted manually to improve algorithm 
performance. Additionally, the number of normal photo-
plethysmography peaks needed to be detected to 
terminate a circulatory arrest alarm was increased. 
A detailed description of the algorithm is provided in the 
appendix (pp 1–6). Data analyses were performed in 
Python (version 3.10).

Statistical analysis
Details regarding the power calculation can be found in 
the study protocol. Continuous baseline variables were 
presented as mean and SD or median and IQR, 
depending on the normality of the distribution 
(established using a Shapiro–Wilk test). Comparisons 
were made with a Student’s t test or Mann-Whitney 
U test. Categorical variables were reported as frequencies 
(percentages) and analysed using the Pearson’s χ² or 
Fisher’s exact test. A p value of less than 0·05 was 
considered statistically significant. All induced 
circulatory arrests were analysed as individual events. 
Alarms in the absence of induced or true circulatory 
arrest or severe haemodynamic instability (mean arterial 
pressure ≤45 mm Hg or pulse pressure ≤15 mm Hg) 
were regarded as false positive. Alarms were also 
regarded false positive in the case of an early termination 
of the alert by the re-detection of pulsatile photo-
plethysmography signal. The perfor mance of the 
algorithm was evaluated for each iteration and reported 
by providing the sensitivity (the primary endpoint) to 
detect circulatory arrest with 95% CIs, the number of 
false positive circulatory arrest alarms, and the false 
positive alarm rate; the false positive alarm rate was 
calculated by dividing the number of false positive 
alarms by the number of hours of non-circulatory arrest 
data. All collected photoplethysmography data were 
analysed for false positive circulatory arrest alarms. 
Positive predictive values with 95% CIs were provided as 
well. The specificity was reported on the basis of 1-min 
intervals of pulsatile photoplethysmography signal 
correctly identified as non-circulatory arrest.24 This 
approach was chosen in light of the differences in 
duration of non-circulatory arrest data per patient, and 
potential for multiple false positive alarms within 
a single patient. Sensitivity analysis was performed 

including only the first induced event of each individual 
patient to assess dependency in the data. In addition to 
the main analysis, post-hoc analyses were performed to 
calculate the sensitivity of the detection of spontaneous 
cardiac arrests as well as of the sensitivity of interruptions 
of blood flow through blood pressure cuff inflation.
Statistical analyses were performed in SPSS (version 27.0).

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report.

Results
A total of 306 patients were enrolled in the study between 
March 14, 2022, and April 21, 2023. In total, 15 patients 
were excluded because of missing photoplethysmography 
or reference data related to technical issues or human 
error (appendix p 7). Therefore, 291 patients were 
included in the analysis, of whom 274 patients were in 
the TAVI group, seven patients were in the S-ICD group, 
and ten patients were in the ventricular tachycardia 
ablation group. In these patients, 324 circulatory arrests 
were induced in 214 patients and there were 278 h of 
non-circulatory arrest data. In 77 patients, no circulatory 
arrest was induced, consisting primarily of patients in 
the TAVI group without balloon dilatation.

The baseline characteristics are presented in table 1. 
The median age was 79 years (IQR 75–83); 80 years 
(75–84) in the TAVI group, 47 years (IQR 44–67) in the 
S-ICD group, and 62 years (IQR 55–74) in the ventricular 
tachycardia ablation group. In total, 167 patients (57%) 
were male and 124 (43%) were female; 219 (75%) had a 
white or fair Fitzpatrick scale skin type; and 204 (72%) 
had nil to sparse arm hair density. Patient characteristics 
did not differ between the consecutive iterations 
(appendix p 8).

The first training set consisted of 74 patients, with 
70 induced circulatory arrests in 50 patients, and 44 h of 
non-circulatory arrest data. The sensitivity for circulatory 
arrest detection was 100% (95% CI 94–100%), with four 
false positive circulatory arrest alarms, resulting in a false 
positive alarm rate of 0·09 (table 2). The positive 
predictive value was 95% (95% CI 86–98%). The 
specificity for the detection of pulsatile photo-
plethysmography signal was 99·9% (99·7–100·0%) with 
analysis of 1-min intervals (table 3).

The second training set consisted of 66 patients, with 78 
induced circulatory arrests in 50 patients, and 75 h of non-
circulatory arrest data. The sensitivity for circulatory arrest 
detection was 100% (95% CI 94–100%), with six false 
positives, and a false positive alarm rate of 0·08 (table 2). 
The positive predictive value was 93% (95% CI 85–97%). 
The specificity for the detection of pulsatile photo-
plethysmography signal was 99·8% (99·6–99·9%; table 3).

The third training set consisted of 65 patients, with 
79 induced circulatory arrests in 50 patients, and 68 h of 

See Online for appendix
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non-circulatory arrest data. The sensitivity for circulatory 
arrest detection was 100% (95% CI 94–100%), with two 
false positives, resulting in a false positive alarm rate of 
0·03 (table 2). The positive predictive value was 98% 
(95% CI 91–100%). The specificity for the detection 
of pulsatile photoplethysmography signal was 100·0% 

(99·8–100·0%; table 3). Further details on the 
performances of the three training iterations are 
presented in tables 2 and 3 and figure 2.

The validation set consisted of 86 patients, with 
97 induced circulatory arrests in 64 patients and 91 h of 
non-circulatory arrest data. The sensitivity for 

All patients (n=291) Transcatheter aortic 

valve implantation 

(n=274)

Subcutaneous implantable 

cardioverter defibrillator 

implantation (n=7)

Ventricular tachycardia 

ablation (n=10)

Age, years 79 (75–83) 80 (75–84) 47 (44–67) 62 (55–74)

Male sex 167 (57%) 156 (57%) 4 (57%) 7 (70%)

Female sex 124 (43%) 118 (43%) 3 (43%) 3 (30%)

BMI, kg/m2 27 (24–30) 27 (24–30) 27 (23–29) 24 (24–29)

Body surface area, m2 1·9 (0·22) 1·9 (0·22) 2·1 (0·21) 2·0 (0·16)

Medical history

Hypertension 143 (49%) 139 (51%) 0 4 (40%)

Diabetes 83 (29%) 79 (29%) 0 4 (40%)

Smoking, current or former 155/265 (58%) 147/251 (59%) 3/6 (50%) 5/8 (63%)

History of cardiac arrest 7 (2%) 5 (2%) 2 (29%) 0

History of myocardial infarction 47/288 (16%) 40/271 (15%) 2 (29%) 5 (50%)

History of coronary artery disease 132 (45%) 125 (46%) 2 (29%) 5 (50%)

Moderate or severe aortic valve stenosis 271 (93%) 270 (99%) 0 1 (10%)

History of stroke or transient ischaemic attack 40 (14%) 39 (14%) 0 1 (10%)

History of atrial fibrillation 78/289 (27%) 78/272 (29%) 0 0

Left ventricular systolic function

Good, ≥52% 187/288 (65%) 184/272 (68%) 3 (43%) 0

Mildly reduced, 41–51% 63/288 (22%) 58/272 (21%) 1 (14%) 4/9 (44%)

Moderately reduced, 30–40% 26/288 (9%) 22/272 (8%) 3 (43%) 1/9 (11%)

Severely reduced, <30% 12/288 (4%) 8/272 (3%) 0 4/9 (44%)

Medication

β blocker 168 (58%) 155 (57%) 3 (43%) 0

Angiotensin-converting enzyme inhibitor 152 (52%) 14 (5%) 4 (57%) 2 (20%)

Calcium channel blocker 72 (25%) 70 (26%) 1 (14%) 1 (10%)

Mineralocorticoid receptor antagonist 41 (14%) 37 (14%) 3 (43%) 1 (10%)

Loop diuretic 112 (38%) 107 (39%) 2 (29%) 3 (30%)

Thiazide diuretic 38 (13%) 38 (14%) 0 0

Laboratory values of haemoglobin, mmol/L 7·9 (0·95) 7·9 (0·93) 8·4 (0·84) 9·1 (0·85)

Fitzpatrick scale

I, white 24 (8%) 24 (9%) 0 0

II, fair 195 (67%) 185 (68%) 5 (71%) 5 (50%)

III, medium 57 (20%) 53 (19%) 2 (29%) 2 (20%)

IV, olive 13 (5%) 11 (4%) 0 2 (20%)

V, brown 1 (<1%) 1 (<1%) 0 0

VI, very dark brown 1 (<1%) 0 0 1 (10%)

Arm hair density

Nil 96/286 (34%) 89/269 (33%) 3 (43%) 4 (40%)

Sparse 108/286 (38%) 104/269 (39%) 3 (43%) 1 (10%)

Moderate 71/286 (25%) 66/269 (25%) 1 (14%) 4 (40%)

Dense 11/286 (4%) 10/269 (4%) 0 1 (10%)

Wrist circumference, cm 17·0 (16·0–18·0) 17·0 (16·0–18·0) 15·6 (14·5–16·4) 17·2 (16·3–18·7)

Data are mean (SD), median (IQR), or n (%). Sex was self-reported. Smoking status was known for 265 (91%) patients, history of myocardial infarction for 288 (99%) 

patients, left ventricular systolic function for 288 (99%) patients, arm hair density scale in 286 (98%) patients, and history of atrial fibrillation in 289 (99%) patients.

Table 1: Baseline characteristics for each group
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circulatory arrest detection was 98% (95% CI 92–100%). 
There were 11 false positive circulatory arrest alarms, 
and a false positive alarm rate of 0·12. The positive 
predictive value was 90% (95% CI 82–94%). The 
specificity for the detection of pulsatile photo-
plethysmography signal was 99·9% (99·8–100·0%). 
Further details are presented in tables 2 and 3 and 
figure 2. When only including all first circulatory arrest 
events (64 events), the sensitivity was 97% (95% CI 
88–99%).

In the validation cohort, there were in total 
75 interruptions to blood flow related to blood pressure 
cuff inflation in 11 patients (figure 3A). The sensitivity to 

detect these events was 97% (95% CI 90–100%) 
considering every measurement as a single event.

A total of nine patients had a spontaneous cardiac 
arrest, all during TAVI. Two patients had ventricular 
fibrill ation, five had pulseless electrical activity 
(figure 3B), and two had asystole. All but one spontaneous 
cardiac arrest were detected by the circulatory arrest 
detection algorithm.

Discussion
The DETECT project is dedicated to developing 
a technological solution for automated cardiac arrest 
detection and alarming. In this DETECT-1 study, we 

Training 1 (n=74) Training 2 (n=66) Training 3 (n=65) Validation (n=86)

Intervention

Transcatheter aortic valve implantation 72 63 62 77

Subcutaneous implantable cardioverter defibrillator implantation 1 1 2 3

Ventricular tachycardia ablation 1 2 1 6

Patients with induced events 50 50 50 64

Patients without induced events 24 16 15 22

Induced events

Rapid ventricular pacing with balloon dilatation:* pre-dilatation 33 31 30 29

Rapid ventricular pacing with balloon dilatation:* valve placement 23 27 21 26

Rapid ventricular pacing with balloon dilatation:* post-dilatation 13 16 22 25

Ventricular fibrillation induction (defibrillation test) 1 1 2 4

Ventricular tachycardia induction 0 3 4 13

Total 70 78 79 97

Median duration of induced event, s 11 (9–16) 12 (10–16) 13 (9–15) 13 (10–16)

Hours of non-circulatory arrest data 44 75 68 91

True positive alarms 70 78 79 95

False negative alarms 0 0 0 2

False positive alarms 4 6 2 11

Unique number of patients with false positive alarms 3 5 2 11

False positive alarm rate 0·09 0·08 0·03 0·12

Sensitivity 100% (94–100%) 100% (94–100%) 100% (94–100%) 98% (92–100%)

Positive predictive value 95% (86–98%) 93% (85–97%) 98% (91–100%) 90% (82–94%)

Data are n, median (range), or value (95% CI). Primary and secondary endpoints did not differ in relation to patient or procedural characteristics, including sex and study site. The 

sensitivity is the primary outcome of this study. *Transcatheter aortic valve implantation.

Table 2: Algorithm performance

Training 1 (n=74) Training 2 (n=66) Training 3 (n=65) Validation (n=86)

Pulsatile photoplethysmography signal, 

classified as pulsatile: true negative, min

2660 4483 4078 5439

Non-pulsatile photoplethysmography signal, 

classified as non-pulsatile: true positive, min

15 20 17 25

False positive, min 2·0 8·0 1·0 3·5

False negative, min 0·0 0·0 0·0 0·5

Specificity for detection of pulsatile 

photoplethysmography signal

99·9% (99·7–100·0%) 99·8% (99·6–99·9%) 100·0% (99·8–100·0%) 99·9% (99·8–100·0%)

Data are n or value (95% CI). Specificity was calculated on the basis of 1-min intervals (instead of 1-h intervals) to improve interpretation given the short duration of false 

positive alarms.

Table 3: Pulsatile and non-pulsatile photoplethysmography signal, expressed in minutes, for each training iteration and the validation set
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present the results of the development and validation of 
the circulatory arrest detection algorithm based on 
photoplethysmography using patient data of 
induced circulatory arrests. Relying solely on photo-
plethysmography data, induced circulatory arrest was 
able to be detected with high sensitivity and low false 
positives. These promising findings warrant the further 
development of this wearable technology to enable 
automated cardiac arrest detection and alarming in a 
home setting.

The early recognition of cardiac arrest is a crucial link 
in the chain of survival to enable the activation of an 
emergency medical response. Although more than 
90% of patients with a witnessed cardiac arrest receive 
emergency medical treatment, this occurs for only 
55% of all patients who have an unwitnessed cardiac 
arrest, and together with the longer treatment delays, 
this results in dismal survival chances of less than 
5%.9,14,25 The use of an innovative wearable biosensor 
technology could bridge the gap in OHCA recognition. 
The potential effect on OHCA survival of different 
biosensor sensitivities was recently estimated from 
OHCA data of the British Columbia Cardiac Arrest 
Registry.14 Assuming that the biosensor for automated 
cardiac arrest detection was used in all previously 
unwitnessed cases, survival was expected to increase 
2·3 times for sensor sensitivities of 90%, and 2·5 times 
for sensitivities of 100%.

Although an awaited technology, there are sparse data 
from small studies on the potential of automated 
circulatory arrest detection using smart devices. In 
a proof-of-concept study, a machine learning-based algo-
rithm could distinguish cardiac arrest-associated agonal 
breathing from usual breathing sounds (including 
snoring and hypopnoea, etc).26 ECG monitoring is well 
established to detect cardiac arrest, but continuous 
monitoring in a home setting is less feasible, sensitive to 
noise, and would not recognise pulseless electrical 
activity as a circulatory arrest.13 For photoplethysmography, 
animal studies have shown the feasibility of the detection 
of induced haemodynamically unstable arrhythmias.16,17

Photoplethysmography is the main sensor technology 
of our cardiac arrest detection solution to be developed 

and provides the direct assessment of blood flow, 
not specifically ventricular tachycardia or ventricular 
fibrillation, which are electrical processes. Therefore, 
whether cardiac arrest results from a shockable or non-
shockable heart rhythm is irrelevant to the algorithm. 
Although photoplethysmography is also sensitive to noise, 
motion artifacts related to body movements mainly result 
in sharp peaks in the photoplethysmography signal not 
resembling a circu latory arrest episode where the 

Figure 2: Sensitivity and positive predictive value for circulatory arrest 

detection with 95% CI

Training 1 Training 2 Training 3 Validation

100% 95% 100% 93% 100% 98% 98%
90%

Sensitivity Positive predictive value

Figure 3: Interruption of blood flow related to blood pressure cuff inflation in a patient in the TAVI group (A) 

and a patient with spontaneous cardiac arrest (B)

The electrocardiogram signal is represented in blue, the invasively measured arterial blood pressure in red, and the 

photoplethysmography signal in green. (A) Blood pressure cuff inflation resulted in a short-lasting interruption of 

blood flow to the right arm (total duration 13 s), mimicking circulatory arrest. Before the event, the patient was in 

sinus rhythm with a blood pressure of 140/60 mm Hg. Inflation of the blood pressure cuff resulted in an 

interruption of blood flow to the right lower arm resulting in the flattening of the blood pressure and 

photoplethysmography curve. (B) An episode of spontaneous cardiac arrest based on pulseless electrical activity in 

a patient in the TAVI group related to acute aortic valve regurgitation after pre-dilatation. The initial recording (on 

the left) shows sinus rhythm with a blood pressure of 90/45 mm Hg and a normal pulsatile 

photoplethysmography signal. The panel in the middle is a recording of the initial haemodynamic instability with 

a ventricular rhythm on the electrocardiograph with a blood pressure of 55/35 mm Hg (mean arterial pressure 

42 mm Hg) and decreased amplitude on the photoplethysmography recording. The dashed line in the figure 

indicates algorithm alarming for circulatory arrest. In the panel on the right, there is pulseless electrical activity, 

with a flat line on the arterial blood pressure and photoplethysmography curve. The episode was successfully 

detected by the circulatory arrest detection algorithm. After short-lasting cardiopulmonary resuscitation, the 

patient had a return of spontaneous circulation. TAVI=transcatheter aortic valve implantation.

Electrocardiogram

Arterial blood pressure

Photoplethysmography
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B
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photoplethysmography signal flattens out. This is in 
contrast to the ECG signal, where motion artifacts can 
mimic ventricular tachycardia or ventricular fibrillation.27 
Although our study was performed under controlled 
circumstances, the collected data included challenging 
data fragments including atrial and ventricular 
arrhythmias, bradyarrhythmias, and operator-induced or 
patient-induced motion artifacts, or both. Moreover, the 
algorithm had to recognise a circulatory arrest within 5 s; 
this detection window was chosen because the circulatory 
arrest inductions were short-lasting. Despite these factors, 
the false positive alarm rate was low. Although the exact 
cause was not always clear, most false positive alarms 
seemed to be related to poor signal quality that resulted in 
a flattening of the photo plethysmography signal or true 
haemodynamic instability not fulfilling our strict criteria 
for circulatory arrest. It is expected that with longer 
detection intervals, false positive alarm rates will be even 
lower, similar to what was seen with the programming of 
longer detection intervals in ICDs.28,29 This expectation is 
supported by the fact that the false positive registrations 
had a median duration of 20 s, after which the algorithm 
recognised spontaneous pulses and terminated the alarm 
appropriately. Additionally, after circulatory arrest 
induction, the algorithm detected the return of spon-
taneous circulation appropriately in all cases.

The implementation of automated alarming and 
deployment of rescuers will only be feasible with 
minimal false positives. Therefore, several other features 
can be incorporated to minimise false positive alarms. 
First, wearing detection will avoid false positive alarms 
when the wristband is detached or loose-fitting. Second, 
input from an accelerometer sensor to confirm or deny 
a circulatory arrest on the basis of analysis of user 
movements can improve accuracy. Third, an acoustic 
signal before the alarming of rescuers can enable the 
user to manually cancel the alarm. Fourth, the effect of 
motion artifacts can be mitigated by a dedicated 
algorithm, resulting in a more stable and reliable photo-
plethysmography pulse wave.

Motion artifacts could influence the sensitivity of the 
algorithm because a circulatory arrest might be missed 
in the case of inappropriate peak detection. However, this 
is not expected to be a major issue because an eventual 
physical collapse after cardiac arrests will generally be 
followed by the absence of any body movements. 
The single false negative alarm of a spontaneous cardiac 
arrest in our study was related to a noisy photo-
plethysmography signal resulting from the immediate 
resuscitative interventions of the medical team. The 
two induced circulatory arrest events that were missed 
occurred during episodes of poor signal quality, 
underlining the importance of a photoplethysmography 
sensor resistant to noise. In this light, it is important to 
emphasise that in contrast to atrial fibrillation detection 
algorithms, a real-time circulatory arrest detection 
algorithm should be able to handle the photo-

plethysmography signal, despite noise that might lead to 
poor signal quality.30 The handling of noise is further 
explained in the appendix (pp 4–5).

The detection of circulatory arrest did not differ 
according to arrest induction method, but all false 
positive alarms in the validation set were in patients in 
the TAVI group. No predictors of false positive alarms 
could be identified. Additionally, sensitivity did not differ 
in relation to patient or procedural characteristics. Blood 
flow interruptions induced by cuff inflation were detected 
correctly as well. Moreover, robustness of the algorithm 
was confirmed by the appropriate detection of spon-
taneous circulatory arrests in all but one case, albeit in a 
small sample of patients.

Further study is needed to provide an external 
validation of algorithm performance as well as to 
establish its performance in a larger sample of spon-
taneous cardiac arrests (sensitivity) and during normal 
daily activities (false positives). When a reliable 
perform ance is reached in a real-world setting, a 
connection with the Dutch Citizen Rescuer Network 
(HartslagNu) is planned to be established. Additionally, 
a systematic evaluation of populations who might 
benefit from this technology, including cost-effective-
ness, needs to be performed. Intended populations 
could include patients at an increased risk of sudden 
cardiac death, for example those with a family history of 
sudden cardiac death, cardiomyopathies, or post-
myocardial infarction.

Despite its promising findings, it is important to 
acknowledge the study’s limitations. Arterial line 
insertion was not always in the same side as where the 
wristband was applied (ie, it could be inserted in the 
contralateral arm or femoral artery); therefore, a true 
compromise of radial arterial blood flow might have 
been missed and could have resulted in an overestimation 
of false positive alarms. All methods of circulatory arrest 
induction resulted in acute haemo dynamic compromise; 
the algorithm performance needs to be established for 
more gradual forms of cardiac arrest, as is more often the 
case with non-shockable rhythms. False positive alarms 
were only assessed by analysing the photo-
plethysmography signal recorded during the cardiac 
procedure; the number of false positive alarms during 
daily life use, where more motion artifacts can be 
expected, still needs to be investigated. Future studies 
investigating this aspect will also provide insight into 
whether and where additional sensor information needs 
to be incorporated into the algorithm to prevent potential 
false positive alarms. Additionally, the algorithm 
performance needs to be studied in the setting of 
spontaneous cardiac arrests. The DETECT-1 study results 
justify taking these next steps and warrant the further 
development of this potential breakthrough technology.

In conclusion, the automated detection of circulatory 
arrest using a photoplethysmography wristband is 
feasible with excellent sensitivity and low false positives. 
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