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Study Objectives: To compare the accuracy of  automatic sleep staging based on heart rate variability measured from photoplethysmography (PPG) combined 
with body movements measured with an accelerometer, with polysomnography (PSG) and actigraphy.
Methods: Using wrist-worn PPG to analyze heart rate variability and an accelerometer to measure body movements, sleep stages and sleep statistics were 
automatically computed from overnight recordings. Sleep–wake, 4-class (wake/N1 + N2/N3/REM) and 3-class (wake/NREM/REM) classifiers were trained on 
135 simultaneously recorded PSG and PPG recordings of  101 healthy participants and validated on 80 recordings of  51 healthy middle-aged adults. Epoch-by-
epoch agreement and sleep statistics were compared with actigraphy for a subset of  the validation set.
Results: The sleep–wake classifier obtained an epoch-by-epoch Cohen’s κ between PPG and PSG sleep stages of  0.55  ±  0.14, sensitivity to wake of  58.2  
±  17.3%, and accuracy of  91.5  ±  5.1%. κ and sensitivity were significantly higher than with actigraphy (0.40  ±  0.15 and 45.5  ±  19.3%, respectively). The 
3-class classifier achieved a κ of  0.46  ±  0.15 and accuracy of  72.9  ±  8.3%, and the 4-class classifier, a κ of  0.42  ±  0.12 and accuracy of  59.3  ±  8.5%.
Conclusions: The moderate epoch-by-epoch agreement and, in particular, the good agreement in terms of  sleep statistics suggest that this technique is 
promising for long-term sleep monitoring, although more evidence is needed to understand whether it can complement PSG in clinical practice. It also offers an 
improvement in sleep/wake detection over actigraphy for healthy individuals, although this must be confirmed on a larger, clinical population.
Keywords: Photoplethysmography, sleep tracker, actigraphy, computerized analysis, heart rate variability, scoring, statistics.

INTRODUCTION
Sleep polysomnography (PSG) is considered the gold standard 
for objectively evaluating sleep and is the preferred methodol-
ogy to diagnose sleep disorders in clinical practice and often 
used in research trials. However, traditional in-lab PSG setups 
which comprise electroencephalography (EEG) have several 
limitations, such as their high cost, they are labor intensive, 
and they produce an impact to the patient negatively affecting 
sleep.1 Yet, the major disadvantage of PSG is that the method-
ology is not well suited for long-term monitoring beyond one 
or two nights.

Actigraphy is a methodology more suited for long-term 
monitoring of sleep and is highly appropriate for examining 
sleep variability.2 The American Academy of Sleep Medicine 
(AASM) indicated actigraphy as a suitable method to assist in 
the evaluation of patients with circadian disorders and sleep–
wake disturbances and also to assess response to therapy of 
circadian disorders and insomnia.3 The relative simplicity of 
actigraphy, together with the maturity and low-cost of acceler-
ometer sensors, have fueled a growing trend in the area of health 
self-tracking, with many consumer devices in this area offering 
sleep monitoring as a feature of their products.4–6 The first group 
of consumer sleep tracking (CST) devices, such as Jawbone Up 
(Jawbone, San Francisco, CA, USA), or Fitbit Ultra (Fitbit Inc., 
San Francisco, CA, USA), uses actigraphy to estimate periods 
of sleep and wake. However, because it relies exclusively on 
the measurement of gross body movements, actigraphy lacks 

the ability to describe sleep architecture. Furthermore, stud-
ies which validated actigraphy against PSG have shown that it 
tends to overestimate sleep as it is not well equipped to detect 
wakefulness when lying quietly.7–9 The few CST devices that 
have been validated against PSG, such as the Jawbone Up10 
and the Fitbit Ultra (Fitbit Inc., San Francisco, CA, USA),11,12 
were found to overestimate total sleep time (TST) and sleep 
efficiency (SE) as compared to PSG,10,12 confirming the general 
drawback of actigraphy-based sleep measurements.

The second group of more modern CST devices include, 
besides accelerometers, heart rate monitors based on reflective 
photoplethysmography (PPG). Devices such as the Jawbone 
Up3 (Jawbone, San Francisco CA, USA), Fitbit Alta HR (Fitbit 
Inc., San Francisco, CA, USA) or the now discontinued Basis 
Peak (Intel, San Francisco, CA, USA) claim, besides sleep and 
wake tracking, the ability to depict sleep architecture. However, 
nearly no validation information for these devices is available, 
and questions with respect to the accuracy of modern CST 
devices remain unanswered.4–6

Despite the lack of evidence for CST devices, the physiologi-
cal link between cardiac activity, for example, indirectly meas-
ured with PPG, and sleep is relatively well understood. PPG 
is a technique whereby reflected or transmitted light shone 
on the skin is measured by a photosensor. Light is absorbed 
by the skin, by venous blood, and also by arterial blood and 
besides a slow-varying DC component, the measured signal 
has a pulsatile component related to the arterial blood volume 

Statement of Significance
Polysomnographic studies are invaluable in the assessment and diagnosis of  sleep disorders. However, this specialized and labor-intensive procedure is 
less suitable for long-term monitoring. Recent years have shown an explosion in the availability of  wearable devices which claim to be able to track sleep 
and depict sleep architecture. Although practically well suited for long-term home sleep monitoring, the performance of  most of  these devices remains 
unpublished. We evaluated the sleep annotation performance of  a wrist-worn photoplethysmography device in a population of  healthy middle-aged adults. 
Further validation is needed for other age groups and sleep pathologies.
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changes due to cardiac activity. Transmissive PPG, typically 
mounted on the finger tip, has been extensively used in vari-
ous clinical applications and has been commercially available 
in pulse oximeters, vascular diagnostic tools, and beat-to-
beat blood pressure devices for the past four decades.13 When 
mounted on the wrist, reflective PPG (simply referred to as 
PPG in the remainder of the manuscript) measures blood vol-
ume changes in the microvascular bed of tissue of that part of 
the body. These sensors have been shown to accurately meas-
ure average heart rate, typically calculated over windows of 
a few seconds.14 They also offer, in theory, the possibility of 
measuring heart rate variability (HRV) throughout the night 
based on the analysis of the distance between consecutive heart 
beats detected in the PPG signal. The relation between HRV, 
expressing characteristics of the autonomic nervous system 
(ANS) and its sympathetic nervous system (SNS) and para-
sympathetic nervous system (PNS) divisions, and sleep stages 
has been extensively described in literature. For example, as 
nonrapid eye movement (NREM) sleep progresses from N1 to 
N3, there is an accompanying increase in cardiovagal drive and 
PNS activity15,16 and a reduction in cardiac and SNS activity, 
translating to a decrease in heart rate and an increase in the 
respiratory mediation of HRV, visible in the high-frequency 
band (HF, 0.15 to 0.4 Hz), as compared to wake.16 In contrast, 
rapid eye movement (REM) sleep is a state of autonomic insta-
bility where PNS and SNS activity fluctuate, producing abrupt 
changes in heart rate. The average heart rate and the power in 
the low-frequency band (LF, 0.04 to 0.15 Hz) of HRV is higher 
during REM than during NREM sleep, and there is a shift of 
the LF/HF ratio toward sympathetic dominance.16,17 It has also 
been shown that these relations extend beyond just a different 
autonomic control for different sleep stages but that they are in 
fact continuously associated with different EEG characteristics 
during sleep. The power in the LF band and the LF/HF ratio, 
for instance, has been found to be correlated with delta EEG 
power,18 and a high coherency was found between the power 
in the HF band and the power in the delta, theta, alpha, sigma, 
and beta EEG bands,19 with nonlinear interactions between 
delta, theta, alpha, and HF power.20 Machine learning tech-
niques have successfully exploited the relations between HRV 
and sleep stages. Several algorithms were shown to be able to 
automatically score sleep stages based on HRV, typically meas-
ured with electrocardiogram (ECG), often in combination with 
respiratory effort21–24 achieving moderate performance. Heart 
rate monitors embedded in CST devices could, in theory, ena-
ble similar PPG-based HRV characteristics to be measured, 
and, in combination with body movements measured with the 
accelerometers typically available in those devices, augment 
sleep–wake detection—already feasible with actigraphy—with 
more detailed sleep architecture information.

The current study has two objectives:

-  To compare an automatic sleep staging method based on 
PPG-based HRV and body movements, with PSG.

-  To evaluate whether the addition of PPG-based HRV to 
body movement information improves the estimation of 
sleep–wake statistics as compared with traditional wrist-
worn actigraphy in the same task.

METHODS
The current study was based on three separately collected data 
sets, used to train the sleep staging algorithm (“Training set”) 
and to validate it (“Validation set 1,” “Validation set 2).”

Training Data Set
The training data set consists of a subset of the data collected 
during the SIESTA project in the period from 1997 to 200025 
and which included 165 healthy participants with a mean ±  
standard deviation (SD) age of 46.7 ± 7.7 years. The SIESTA 
study was carried out in five different countries in seven dif-
ferent sleep laboratories. The study was approved by the local 
ethical committee of each research group. None of the partic-
ipants were using or had a history of drug and/or alcohol use, 
were working at night, or had been diagnosed with a medical 
(or mental) disorder interfering with the aim of the study. All 
participants had a Mini-Mental State Examination score26  >25, 
a Pittsburgh Sleep Quality Index (PSQI) score27 of  <6 and a 
bed time between 10:00 pm and 12:00 am. The total duration of 
the data collection per participant in the SIESTA data set was 
15 days. At day 7 and day 8 participants were invited to sleep 
in the sleep laboratory to collect overnight PSG. Two hours 
before their habitual bed time, the participants were asked to 
perform a battery of psychometric tests and afterward the PSG 
was applied. The next morning, the PSG setup was removed 
and after washing, getting dressed, and breakfast, the same psy-
chometric test battery was completed by the participants. All 
participants gave informed consent before participation. The 
PSG recordings of all participants were scored by two trained 
somnologists from different sleep centers and revised by a third 
expert who took the final decision in case of disagreement. 
More details regarding participants and study design were 
described by Klosh et al.25

For the purpose of our study, a total of 135 recordings of 
101 healthy sleepers (57 females) were included, with an age 
range between 20 and 83 years. Additional demographics can 
be found in Table 1.

Validation Data Sets
The sleep staging method was validated with two hold-out data 
sets. None of the participants in the validation sets were part of 
the training set.

Participants
Validation set 1 was collected in 2014 and consisted of 16 
healthy participants (eight females) with a mean age of 51.2  ±  
8.4 years. The study lasted five nights, three measured at home 
which only included actigraphy and two in a hotel which 
included overnight PSG and PPG.

Validation set 2 was collected in 2015 and consisted of 35 
healthy participants (20 females) with a mean age of 52.0 ± 6.9  
years. The study lasted for 16 days, including 2 weeks of home 
monitoring including actigraphy and PPG and two nights at the 
end of the study in a hotel which included overnight PSG, PPG, 
and actigraphy.

Both studies included participants with no primary his-
tory of neurological, cardiovascular, psychiatric, pulmonary, 
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endocrinological, or sleep disorders. In addition, none of the 
participants were using sleep, antidepressant or cardiovascular 
medication, recreational drugs, excessive amounts of alcohol, 
nor were they pregnant or working in shifts, nor crossing more 
than two time zones in the 2 months prior to the investigation. 
All participants of both studies had a body mass index lower 
than 40 and a PSQI  lower than  6.

The two studies were approved by the Internal Committee 
of Biomedical Experiments of Philips Research and were con-
ducted in accordance with the Declaration of Helsinki. All par-
ticipants gave informed consent before participation. The hotel 
gave approval to conduct the experiment on their premises.

Only the hotel night recordings (the last two nights in each 
study) were used because they comprised a complete PSG, 
needed to validate the sleep staging algorithm.

Procedure
Participants arrived at the hotel at 08:00 pm and were informed 
about the procedure. The recording devices were applied and 
participants were free to choose how to spend the time until 
their habitual bed time. Bed and lights off times were registered 
by the researcher, as well as wake up time and lights on time. 
Participants were free to choose how to spend the time between 
the two recording nights. The researcher only monitored the 
beginning and the end of the recording but not the entire night. 
The researcher was available at the hotel for the duration of both 
recording nights, and the participants could call the researcher 
during the night using the hotel room phone.

Recording Devices
Bed and wake times were logged by participants using the consen-
sus sleep diary.28 PSG was recorded with the Philips Respironics 
Alice PDx system (Philips Respironics Inc., Murrysville, PA, 
USA) using the standard 10–20 system electrode placement 
with a referential system montage, assisted by BraiNet (Jordan 
Neuroscience Inc., Redlands, CA, USA). The sleep scoring mon-
tage included the minimum set of three EEG channels recom-
mended by AASM for offline scoring29 (F4-A1, C4-A1, O2-A1) 
plus a backup electrode (C3-A2), left electrooculogram (LOC-
A2), right electrooculogram (ROC-A1), a bipolar submental elec-
tromyogram (EMG1–EMG2), an ECG (modified lead II), and 
two respiratory inductance plethysmography (RIP) belts mounted 
around the thorax and the abdomen (RESP1 and RESP2).

In addition to PSG, a CE-marked logging device containing 
a PPG and three-axial accelerometer sensors (Royal Philips, 
Amsterdam, the Netherlands) was used during the same 
recording periods. The logging device was mounted on the 
nondominant wrist of the participant, with the sensor facing 
the skin on the dorsal side of the hand, above the ulnar styloid 
process.

Finally, the recordings of validation set 2 included actigraphy 
measured with Actiwatch Spectrum (Philips Respironics Inc., 
Murrysville, PA, USA) which uses a piezoelectric accelerome-
ter to detect and log limb movements. It was worn on the dom-
inant wrist of the participant, configured to measure activity 
counts in epochs of 30 seconds.

Analysis
The PSG data were analyzed by an external experienced som-
nologist (SleepVision, Nijmegen, the Netherlands) blind to the 
health condition of the participants and to the purpose of the 
study, and the sleep stages were manually scored in 30-second 
epochs according to the AASM guidelines.29 No scoring of 
respiratory events was performed and the PSG did not high-
light any sign of sleep disorders with any of the 51 participants. 
Table 2 indicates the PSG sleep statistics from the 80 recordings 
of the 51 participants in the two validation sets.

PPG-Based Sleep Stage Classification
In our earlier work,24 we presented a machine learning approach 
to sleep staging based on HRV measured from ECG and res-
piratory effort measured from RIP. The system validated in the 
present paper uses a similar approach and similar set of HRV 
features, albeit computed from interbeat intervals detected from 
PPG instead of ECG. In short, the HRV feature set consists of a 
combination of time-domain features such as sample statistics 
of heart-beat interval durations and consecutive differences,30 
arousal likelihood ratios based on consecutive heart beats,31 
multiscale sample entropy32 and detrended, progressive, and 
windowed fluctuation analysis of heart-beat intervals,33 and 
measures of cardiorespiratory interaction based on visibility 
graphs.34 The feature set also comprises frequency-domain fea-
tures such as the spectral powers in the very low, low, and HF 
bands, with35 and without30 adapted spectral boundaries. HRV 
features were combined with features related to body move-
ments, calculated based on the three-axial accelerometer signal. 

Table 1—Participant Demographics for the Set Used to Train the Algorithm (Training Set) and for the Two Hold-Out Sets Used to Validate the Algorithm 
(Validation Set 1 and Validation Set 2).

Parameter Training set Validation set 1 Validation set 2

Mean (SD) Range Mean (SD) Range Mean (SD) Range

N 101 participants, 135 recordings 16 participants, 26 recordings 35 participants, 54 recordings

Sex 57 female participants (56.4%), 
76 female recordings (56.3%)

8 female participants (50.0%),  
13 female recordings (50.0%)

20 female participants (57.1%),  
34 female recordings (63.0%)

Age (year) 44.2 (17.2) [20, 83] 51.2 (8.4) [41, 66] 52.0 (6.9) [41, 64]

BMI (kg/m2) 23.9 (3.1) [17.2, 31.3] 25.9 (2.8) [20.90, 29.86] 26.2 (4.0) [19.27, 36.23]

Abbreviations: BMI, body mass index; SD, standard deviation.
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Because no respiratory information is readily available from the 
wrist-worn sensors used, respiratory features were left out.

The sleep staging algorithm was trained with the same 
machine learning techniques described in24, using the data of 
the training set (Table 1). Because no PPG data were available 
in the training set, the HRV features used to train the algorithm 
were estimated from ECG. Because the features are based on 
the distance between consecutive R-R intervals, they are essen-
tially equivalent (in the absence of cardiovascular conditions) 
when computed from consecutive pulses measured from PPG. 
Using PPG-derived HRV, and body movement features, the 
algorithm was validated with a hold-out validation procedure 
on both validation sets (Table 1).

The sleep staging algorithm provides an estimation of the 
sleep stage (wake, combined N1 and N2, N3 and REM) of each 
30 seconds epoch. Based on this automatic scoring, overall 
sleep–wake statistics such as sleep onset latency (SOL), wake 
after sleep onset (WASO), total wake time (TWT), TST, and SE 
as well as the percentage of each sleep stage were computed for 
each overnight recording.

Comparison With PSG
In order to validate the output of the sleep staging algorithm, the 
clocks of the PPG sensor and of the PSG needed to be synchro-
nized. This was achieved by compensating the clock offset and 
drift based on an interpolated (at 4 Hz) time series comprised of 
the interbeat intervals detected from the PPG and another series 
from the interbeat intervals calculated from R-peaks detected 
from the ECG signal from the PSG. This guaranteed that the 
ground-truth reference and the output of the sleep staging algo-
rithm were perfectly aligned to the start time and that there was 
no clock drift between the two recorders.

After synchronizing both signals, the hypnogram derived 
from PSG annotations (henceforth referred to as “refer-
ence hypnogram”) and the hypnogram estimated by the PPG 

algorithm (henceforth referred to as “estimated hypnogram”) 
were restricted to the period between lights off in the evening 
and lights on in the morning. The estimated hypnogram was 
compared with the reference hypnogram both in terms of 
epoch-by-epoch agreement, as well as in terms of sleep statis-
tics calculated for each overnight recording.

Regarding the epoch-by-epoch agreement, two quality metrics 
were used: accuracy and Cohen’s kappa coefficient of agree-
ment36 (or κ, in short). Accuracy indicates the percentage of 
30-second epochs with correctly classified sleep stages. κ indi-
cates the agreement between the two hypnograms corrected for 
agreement by chance. Though harder to interpret, the latter is 
more informative because of the imbalance in the occurrence of 
different sleep stages. κ is usually interpreted with the following 
terms: below 0.20 “slight agreement,” 0.21 to 0.4 “fair agree-
ment”, 0.41 to 0.60 “moderate agreement,” 0.61 to 0.8 “substan-
tial agreement,” and above 0.81 “almost perfect agreement.”

Regarding the sleep statistics, each measure was evaluated by 
calculating the mean and SD of the error and the root mean 
squared error (RMSE) between the estimation obtained with 
the estimated hypnogram and the statistics calculated from the 
reference hypnogram. In addition, a Bland–Altman analysis of 
each statistic was performed, by calculating and plotting the 
mean and SD of the differences and the corresponding 95% 
limits of agreement (LoA) as the mean difference  ±  1.96 times 
the SD. A positive mean difference value indicates that the algo-
rithm tends to overestimate a particular statistic in comparison 
with reference PSG, while a negative value means that statistic 
is underestimated.

Similar to related work,10,37,38 we defined a priori a satisfac-
tory agreement if differences between the estimated and the 
PSG reference for WASO, TWT, and TST were smaller than 30 
minutes and if the differences for SE were below 5%. Because 
the differences between PPG and PSG do not follow a normal 
distribution, the 99.9% confidence intervals (CIs) for these 

Table 2—PSG Sleep Statistics, and Bias, 95% Limits of  Agreement, and Root Mean Squared Error Between PPG and PSG in 80 Recordings of  51 Middle-
Aged Adults.

Statistic PSG PPG–PSG

Mean (SD) Range Mean error (SD) 95% LoA RMSE

SOL (minutes) 15.53 (8.23) [3.50, 39.50] −6.80 (7.69) [−21.88, 8.28] 10.23

WASO (minutes) 33.76 (29.63) [2.00, 164.50] −3.19 (25.28) [−52.74, 46.36] 25.32

TWT (minutes) 55.32 (36.04) [14.00, 218.00] −13.40 (31.74) [−75.60, 48.80] 7.37

TIB (minutes) 462.42 (43.15) [329.00, 531.50] n/a n/a n/a

TST (minutes) 407.10 (50.13) [232.00, 504.50] 13.40 (31.74) [−48.80, 75.60] 34.27

SE (%) 88.10 (7.67) [51.56, 96.93] 2.90 (6.82) [−10.46, 16.26] 7.37

Time in N1 + N2 
(minutes)

208.91 (44.58) [107.00, 310.50] −28.33 (42.22) [−111.09, 54.42] 50.63

Time in N3 (minutes) 107.22 (34.48) [39.50, 188.00] 0.26 (38.32) [−74.85, 75.37] 38.08

Time in REM (minutes) 90.97 (28.87) [28.00, 150.50] 41.47 (33.62) [−24.43, 107.37] 53.25

Abbreviations: LoA, limits of  agreement; PPG, photoplethysmography; PSG, polysomnography; REM, rapid eye movement; RMSE, root mean squared 
error; SD, standard deviation; SE, sleep efficiency; SOL, sleep onset latency; TIB, time in bed; TST, total sleep time; TWT, total wake time; WASO, wake 
after sleep onset.
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errors were calculated with a nonparametric method based on 
Wilcoxon’s signed rank test.39 Statistically significant overall 
satisfactory agreement was considered (at p  <  .001) if both 
boundaries of the 99.9% CI were (in absolute terms) smaller 
than 30 minutes (for WASO, TWT, and TST) and 5% (for SE).40

It should be noted that the sleep statistic time in bed was not 
computed because the analysis was restricted to the lights off 
period according to protocol, corresponding not exactly to the 
time spent in bed but rather to the period of time when the par-
ticipants had the intention to sleep.

Comparison With Actigraphy
Actigraphy-based sleep–wake statistics (SOL, WASO, TWT, 
TST, and SE) and epoch-by-epoch sleep–wake classification 
were estimated using the Actiware software (Philips Respironics 
Inc., Murrysville, PA, USA) with the default sensitivity settings 
(medium, 40).

The sleep–wake statistics were evaluated against PSG on 
the 53 recordings of validation set 2 for which actigraphy was 
available. The results were compared with the sleep–wake sta-
tistics obtained with PPG for the same recordings. A Wilcoxon 
signed-rank test was used to compare the estimation errors 
obtained with actigraphy and with PPG.

In order to evaluate the performance of epoch-by-epoch clas-
sification, the clocks of the actigraphy device and the PSG were 
synchronized. This was achieved by computing a surrogate meas-
ure of actigraphy from the artifacts in the respiratory effort signal 
recorded with PSG41 and then finding the clock offset that max-
imized the correlation between the actigraphy and the surrogate 
actigraphy signals. All comparisons were manually reviewed to 
guarantee that the clocks were precisely synchronized. Because 
this method depended on the availability of a valid respiratory 
effort signal, it could only be applied on 49 recordings of valida-
tion set 2 and the comparison between PPG and actigraphy was 
restricted to that subset. The same metrics of κ, accuracy, speci-
ficity, and sensitivity (to wake) were used to evaluate the epoch-
by-epoch classification agreement with ground-truth annotations 
from PSG. A Wilcoxon signed-rank test was used to compare the 
performance obtained with actigraphy and with PPG.

RESULTS

PPG-Based Sleep-Wake Statistics
SOL (minutes), WASO (minutes), TWT (minutes), TST (min-
utes), and SE (%) were computed from both the human anno-
tation of the recordings as well as from the automated scoring 
by the PPG-based algorithm. Table 2 summarizes the mean 
differences, the 95% LoA, and the RMSE for these statistics, 
Figure 1 and Figure 2 illustrate the Bland–Altman analyses of 
the differences for SOL, WASO, and TWT and of TST and SE, 
respectively. The algorithm underestimates, in average, SOL 
and WASO by less than 10 minutes and TWT by less than 15 
minutes and overestimates TST by less than 15 minutes and SE 
by less than 5% in comparison with PSG. The SD of the error 
for SOL is below 10 minutes and for SE, below 10%, but for 
the remaining sleep/wake statistics, WASO, TWT, and TST, it 
is close to 30 minutes. Closer inspection of the Bland–Altman 
plots of SOL and WASO reveals that despite the relatively low 
bias, and for SOL, the SD of the error, it tends to underestimate 
wake time when SOL and WASO increase beyond 15 minutes.

The algorithm achieves a satisfactory agreement according to 
the a priori defined margin of error of 30 minutes for 77.5% of the 
recordings for TST (62 recordings), 77.5% for TWT (62 record-
ings), 81.2% for WASO (65 recordings), and according to the a 
priori margin of 5% for 71.2% of the recordings for SE (57 record-
ings). Both boundaries of the 99.9% CI for TST ([−0.75, 21.00] 
minutes), TWT ([−21.00, 0.75] minutes), and WASO ([−10.00, 
8.00] minutes) were contained within the priori interval of (−30, 
30) minutes and the a priori defined satisfactory agreement can be 
statistically established (p  <  .001) for all statistics. Both bounda-
ries of the 99.9% CI for SE ([−0.13, 4.61] %) were also contained 
within the a priori interval (−5, 5) % and the a priori defined satis-
factory agreement can also be statistically established (p  <  .001).

PPG-Based Sleep Staging Performance
The mean differences, LoA, and RMSE for the duration of sleep 
stages N1 + N2, N3, and REM are given in Table 2. Figure 3 
illustrates the Bland–Altman analyses of the differences for 
these sleep stages. The best agreement was obtained for the 
estimation of time in N3, time in N1 + N2 was underestimated, 

Figure 1—Bland–Altman plots for wake statistics. DIFF and AVG correspond to the difference and average between PPG and PSG, respec-
tively. From left to right: sleep onset latency (SOL), wake after sleep onset (WASO), total wake time (TWT). PPG, photoplethysmography; 
PSG, polysomnography.
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in average, by nearly 30 minutes, and time in REM was overes-
timated by slightly more than 40 minutes.

The agreement between the automated system and the human 
annotation was also considered in terms of 30-second epoch-
by-epoch agreement. Multiple cases were considered: first, 
the system was used for 4-class classification to distinguish 
between wake, REM, combined N1 + N2, and N3. In this case, 
the algorithm achieved a moderate agreement with a κ of 0.42 
and accuracy of 59.3%. In the second case, the system was used 
for 3-class classification to distinguish between wake, REM, 
and NREM (combining N1, N2, and N3) and the κ increased 
to 0.46 and accuracy to 72.9%. Finally, the system was used 
for 2-class classification, distinguishing only between wake and 
sleep (combining all sleep classes), achieving a κ of 0.55 and 
accuracy of 91.5%.

Table 3 shows the κ and accuracy for these three cases. In 
addition, the table also shows κ, accuracy, sensitivity, and spec-
ificity in the detection of separate sleep stages. The worst sin-
gle-class detection performances were obtained for N1 + N2 
followed by REM. This is in line with the Bland–Altman analy-
sis of these two statistics, illustrated in Figure 3.

Actigraphy-Based Sleep–Wake Classification Performance And 
Comparison With PPG
Regarding the error between the sleep–wake statistics obtained with 
actigraphy and with PSG, indicated in Table 4, SOL and WASO 
were underestimated by less than 10 minutes, TWT by less than 20 
minutes, TST was overestimated by slightly more than 10 minutes, 
and SE by less than 5%. Table 4 also indicates the error calculated 
between the sleep–wake statistics estimated with PPG and PSG for 
the same subset of validation set 2. Although there is a decrease 
in the bias for SOL, WASO, and TWT when estimating the sleep–
wake statistics with PPG as compared with actigraphy, only the 
decrease in the SOL estimation error is significant (p  <  .05).

Regarding the epoch-by-epoch sleep–wake classification 
performance, Table 5 indicates the results obtained between 
actigraphy and PSG, and between PPG and PSG for a subset 
of validation set 2. The κ obtained with PPG (0.55) is signifi-
cantly (p  <  .001) higher than obtained with actigraphy (0.40). 
Additionally, there is a significant (p  <  .001) increase in sen-
sitivity with PPG (57.4%) when compared with actigraphy 
(45.5%). There were no significant differences for accuracy and 
specificity, both above 90% for actigraphy and for PPG.

Figure 3—Bland–Altman plots for sleep stage statistics. DIFF and AVG correspond to the difference and average between PPG and PSG, 
respectively. From left to right: time in N1 + N2, time in N3, time in REM. PPG, photoplethysmography; PSG, polysomnography; REM, rapid 
eye movement.

Figure 2—Bland–Altman plots for sleep-wake statistics. DIFF and AVG correspond to the difference and average between PPG and PSG, 
respectively. From left to right: total sleep time (TST), sleep efficiency (SE). PPG, photoplethysmography; PSG, polysomnography.
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Table 3—Epoch-by-Epoch Agreement Between PSG and PPG: Mean (Standard Deviation) of  Overall and per Class κ and Accuracy, and per Class 
Sensitivity and Specificity.

Classes κ Accuracy Sensitivity Specificity

Multiple classesa

Wake/N1 + N2/N3/REM 0.42 (0.12) 59.3 (8.5) n/a n/a

Wake/NREM/REM 0.46 (0.15) 72.9 (8.3) n/a n/a

Single class detectionb

Wake 0.55 (0.14) 91.5 (5.1) 58.2 (17.3) 96.9 (2.0)

N1 + N2 0.30 (0.13) 65.7 (7.1) 55.6 (9.2) 74.2 (8.2)

N3 0.50 (0.19) 82.5 (6.3) 63.9 (18.9) 89.0 (4.8)

NREM 0.46 (0.16) 75.3 (7.7) 77.5 (7.8) 71.1 (12.0)

REM 0.43 (0.19) 78.9 (7.2) 70.7 (18.2) 81.4 (6.9)

Abbreviations: PPG, photoplethysmography; PSG, polysomnography; REM, rapid eye movement; NREM, non-REM.
aAgreement for multiple classes computed based on the comparison between PPG epoch-based classification and PSG annotations; for the 4-class task 
PSG N1 and N2 classes were merged into a single N1 + N2 class; for the 3-class task, PPG N1 + N2 and N3 were merged into a single NREM class and 
PSG N1, N2, and N3 were merged into a single NREM class.
bFor each class detection task, the remaining classes were merged in a class, both for PPG and for PSG, and considered the negative class for purposes of  
sensitivity and specificity calculation.

Table 5—Epoch-by-epoch Sleep–Wake Classification Agreement Between Actigraphy and PSG and Between PPG and PSG in 49 Recordings (Subset of  
Validation Set 2).

Agreement 
metric

Actigraphy versus PSG,  
mean performance (SD)

PPG versus PSG,  
mean performance (SD)

Comparison between PPG and 
actigraphya

κ (−) 0.40 (0.15) 0.55 (0.15) p  <  .001

Accuracy (%) 91.8 (5.1) 91.3 (5.9) p  =  .58

Sensitivity (%) 45.5 (19.3) 57.4 (17.7) p  <  .001

Specificity (%) 97.1 (1.6) 97.4 (1.9) p  =  .21

Abbreviations: PPG, photoplethysmography; PSG, polysomnography; SD, standard deviation.
aWilcoxon signed-rank comparison of  estimation error between actigraphy versus PSG and PPG versus PSG.

Table 4—Bias, Standard Deviation, and Root Mean Squared Error in Sleep-wake Statistics Between Actigraphy and PSG, and Between PPG and PSG in 
53 Recordings (Subset of  Validation Set 2).

Statistic Actigraphy versus PSG PPG versus PSG Comparison between PPG and 
actigraphyc

Mean error (SD)a RMSE Mean error (SD)b RMSE

SOL (minutes) −8.59 (9.05) 12.42 −7.48 (6.64) 9.96 p  < .05

WASO (minutes) −8.32 (29.92) 30.79 −5.25 (27.89) 28.12 p  =  .18

TWT (minutes) −17.94 (28.09) 33.10 −17.22 (34.19) 37.99 p  =  .18

TST (minutes) 10.60 (30.29) 31.83 15.66 (34.95) 38.00 p  =  .22

SE (%) 3.66 (5.85) 6.85 3.71 (7.34) 8.16 p  =  .51

Abbreviation: PPG, photoplethysmography; PSG, polysomnography; RMSE, root mean squared error; SD, standard deviation; SE, sleep efficiency; SOL, 
sleep onset latency; TST, total sleep time; TWT, total wake time; WASO, wake after sleep onset.
aActigraphy minus PSG.
bPPG minus PSG.
cWilcoxon signed-rank comparison of  estimation error between actigraphy versus PSG and PPG versus PSG.
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DISCUSSION
This manuscript describes the validation procedure and the 
results obtained with a PPG-based sleep staging algorithm 
when compared with human scored PSG and with wrist-worn 
actigraphy. Regarding the estimation of sleep–wake statistics, 
the algorithm achieved a satisfactory agreement for TST, TWT, 
WASO, and SE for more than 70% of the recordings and was 
overall, statistically significant (p  <  .001). Although it achieved 
a relatively small bias for SOL and WASO, inspection of the 
Bland–Altman plots revealed that it tends to underestimate 
wake time when SOL and WASO increase beyond 15 minutes. 
This is likely related to the behavior of participants who took 
longer to fall asleep or who woke up during the night and had 
difficulties falling asleep again. Besides lying still, as verified 
by actigraphy, an analysis of the characteristics of the respira-
tory effort signal of the PSG recordings suggested that some 
of these participants might have paced their breathing during 
these periods of wakefulness. This lowered the heart rate as a 
consequence and probably also led to an increase in the HF and 
a decrease in the LF component of HRV when compared with 
irregular, uncontrolled breathing42,43 yielding HRV characteris-
tics closer to those typically observed during N2 or even N344. 
Although the SD of the error for SOL and SE was found to 
be relatively low (below 10 minutes and 10%, respectively), it 
reached nearly 30 minutes for the parameters WASO, TWT, and 
TST. This highlighted the between-participant variability in the 
accuracy of the algorithm.

Furthermore, in comparison with the sleep–wake statistic 
estimations obtained with actigraphy, we observed a signif-
icant improvement in the estimation of SOL, but no signifi-
cant improvement (nor deterioration) for any other statistic. 
Interestingly, the error in the actigraphy estimation of statistics 
such as SE is lower than some of the values reported in litera-
ture.7,9 This likely reflects the healthy nature of the individuals 
in our validation set, and it would be interesting to investigate 
whether the results hold when estimating wake in clinical pop-
ulations or in participants with fragmented sleep and whether 
we would see a significant improvement in performance when 
using PPG to analyze sleep and wake in those cases.

In terms of epoch-by-epoch agreement with human annotated 
PSG, it is clear that the simpler the classification task, the better 
the overall performance is. This suggests that although the HRV 
features used in this work allow, to a certain extent, a reasonable 
partition of NREM classes into N1 + N2 and N3, these are not 
completely separable in the space of the HRV features used. 
When N1, N2, and N3 are merged into a single NREM class, 
the problem of lack of separability between these disappears, 
and the performance naturally increases.

It is also interesting to remark that the performance of the 
algorithm for 4- and 3-class tasks is lower than that reported in 
our earlier work (κ of 0.49 and accuracy of 69% for the 4-class 
task, and κ of 0.56 and accuracy of 80% for the 3-class task). 
Furthermore, while in that work the best single-class results 
were obtained for REM classification,24 the worst single-class 
detection performances are now obtained for N1 + N2 followed 
by REM. One of the possible reasons for the deterioration in 
overall performance might be related to the highly susceptible 
nature of reflective PPG to participant and skin tissue motion, 

which are known to distort the PPG signal45 and consequently 
decrease the precision of detected heart beats, interbeat inter-
vals, and HRV features. Additionally, the absence of respiratory 
features in this study in comparison with our earlier work is 
likely to have a negative impact on performance. Although this 
alone is probably not sufficient to fully explain the decrease, 
other studies have shown the advantage of using features 
(besides body movements) in addition to HRV which help 
further express changes in sympathetic tone, important in the 
classification of REM. Herscovici et al.,46 for instance, com-
bined comparable time- and frequency-domain HRV features 
(referred to by the authors as interpulse periods, or IIP) with 
features describing variations in the amplitude of peripheral 
arterial tone (PAT) measured at the fingertip. The PAT signal 
provides a sensitive surrogate measure of changes in sympa-
thetic tone and exhibits unique characteristics during REM, 
providing strong discriminative power for the detection of this 
sleep stage46 and in general, overall automatic sleep staging 
based on autonomic features.47 Although PAT is not directly 
available with the current sensor, the PPG signal actually con-
tains respiratory-induced intensity variations (RIIV) which are 
related to ventilatory pressure and have been used, successfully, 
to estimate respiratory rate.48 Although not explicitly related to 
RIIV, a preliminary study on ten sleep apnea patients by Uçar 
et al.49 has shown that adding morphological features of PPG 
to a standard set of HRV features increases the performance of 
sleep stage classification. It remains to be confirmed whether 
features extracted from RIIV, together with the addition of ded-
icated HRV features which may better reflect changes in sym-
pathetic tone characteristic of REM help alleviate or overcome 
this degradation.

Finally, the best single-class performance is obtained for 
sleep–wake classification, with a κ of 0.55, accuracy of 91.5%, 
sensitivity to wake of 58.2%, and specificity to wake of 96.9%. 
Comparing the performance with actigraphy-based epoch-by-
epoch sleep–wake classification on a subset of the validation 
set, we found that PPG led to a substantial and significant 
increase in κ (from 0.40 with actigraphy to 0.55 with PPG 
on the same recordings, p  <  .001) and in sensitivity to wake 
(from 45.5% with actigraphy to 57.4% with PPG, p  <  .001). 
The results obtained with actigraphy in our work are slightly 
better than those reported in literature. Marino et al.50 reported 
an accuracy of 86.3%, a sensitivity to sleep of 96.5%, and a 
specificity to sleep of 32.9%. We calculated a κ of 0.37 based 
on their published data. Once more, the differences can prob-
ably be explained by the exclusively healthy characteristics of 
the participants in our validation sets.

Notwithstanding, the increased performance in sleep–wake 
classification using PPG-HRV and body movements when 
compared with actigraphy is likely related to the presence of 
additional information captured by HRV characteristics which 
is better able to capture wake states, especially when the partic-
ipants do not move. The reason why these improvements were 
less prominent in the computation of sleep–wake statistics is 
likely related to the high imbalance between sleep and wake 
classes (the participants in the validation sets had a mean SE of 
88.1%) and especially to the relative lack of variability in the 
sleep–wake statistics to start with (the SD of SOL—computed 
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from PSG—was lower than 10 minutes). It is important to 
remark that the comparison with actigraphy is necessarily lim-
ited by the scope of our study. While actigraphy has been evalu-
ated for many different clinical populations over the last decades 
and its performance and limitations are well understood for dif-
ferent clinical settings, our results only allow tentative conclu-
sions regarding a healthy group of middle-aged participants and 
cannot be automatically extended to other groups. Furthermore, 
this technology has the disadvantage that it assumes an intact 
autonomic function, and its performance will be probably 
impacted by disorders of the ANS which affect the regulation 
of blood pressure, heart rate, and HRV. Besides, the accuracy 
of HRV features is intrinsically linked to the quality and avail-
ability of the PPG signal. Disorders such as peripheral artery 
disease may cause a restriction in the blood flow at peripheral 
arteries, limiting the quality of PPG or even rendering it una-
vailable. By relying simply on the measurement of gross body 
movements as an indicator of wakefulness, actigraphy might be 
more robust to the severity of such conditions.

Nevertheless, its relative low cost, ease of use, and comfort 
for the participant, and its moderate epoch-by-epoch agree-
ment, and good agreement in terms of sleep statistics suggests 
the adequacy of this technique for long-term sleep monitoring, 
although more evidence is needed to understand whether it can 
complement PSG in clinical practice. These results also sug-
gest that besides being more sensitivity to wake, the agreement 
obtained for four sleep stages with this technology (with a κ 
of 0.42) is in fact slightly higher than the overall agreement 
for sleep–wake classification with traditional actigraphy (κ 
of 0.40) in our data set. Provided that the level of evidence 
for PPG-based sleep staging increases in the upcoming years 
and that these findings are confirmed in relevant clinical pop-
ulations, this technology may have the potential to eventu-
ally replace actigraphy in clinical practice with the benefit of 
offering additional insights into the sleep architecture of the 
participants under investigation besides only their sleep–wake 
patterns. Regardless of its potential, however, it will only be 
usable when it has been properly validated on relevant clinical 
populations. To our knowledge, it has not yet been validated 
in individuals with sleep disorders and therefore merits more 
research.

Long-term sleep monitoring was for a long time limited 
by the unavailability of small, comfortable sensors which 
could be used at home without assistance. A notable excep-
tion, accelerometers, enabled the development of actigraphy 
devices which albeit valuable in the assessment of some sleep 
disorders were limited to the analysis of sleep and wake pat-
terns. Recent sensor developments have shown the feasibility 
of accurately monitoring other physiological parameters, with 
PPG, skin temperature, and skin conductance sensors offering 
the promise, in the long run, to be able to complement PSG 
with enough accuracy to enable unobtrusive sleep monitoring 
in clinical practice.
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